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Abstract— Proactivity in robotic assistance is valued in do-
mains like elder-care and caring for patients with mental
disorders, but robot assistants today require exact task or goal
descriptions, and can proactively assist only the user’s ongoing
activity. We propose to formulate the problem of long-horizon
proactive assistance as one of learning temporal patterns in
object movements resulting from the user’s daily routines, then
using this learnt model to predict future object movements,
which the robot can do instead. In this paper, we create a
unified spatio-temporal object dynamics model, based on a
generative graph neural network to learn a predictive model
using temporal sequences of object arrangements, represented
as scene graphs. We identify the lack of a dataset to train and
evaluate such a model on, and collect a behavioral dataset in
simulation, which reflects object-interaction over normal daily
routines. Our model outperforms the baselines on predicting
future object locations, with a 42% average increase in F-1 score
on predicting which objects will move in a certain predictive
window, and 20% average increase in precision on predicting
the correct object destination, implying that our method would
enable an assistive robot to proactively help the user by moving
objects in accordance with the user’s needs.

I. INTRODUCTION

In today’s aging society, the care-giving burden is rapidly
growing, and robots have the potential to not only shoul-
der some of that burden, but to boost a sense of self-
sufficiency among users, enabling elders to live in their
homes independently for longer [1]. Towards being more
effective caregivers, robots should be able to anticipate user
needs, proactively assist without being asked, and adapt
to changing user abilities. Studies on companion service
robots for the elderly [2] and those suffering from mild
cognitive impairments [3], [4] show that proactive behavior
and initiative from the robot are highly valued by the users.

To provide proactive assistance, a robot needs to have
a generalizable semantic understanding of various objects
and their usage, and other agents’ intentions, actions and
preferences. For instance, if a robot understands that the user
likes to have cereal for breakfast at around 8am, and that
they need a cereal box and bowl to do so, the robot can take
those objects out on the counter ready for the user to use,
and afterwards, if the user forgets to put the cereal box back
into the cabinet, a similar understanding that the user should
be done using the cereal box can enable the robot to put it
back for the user. Our aim through this work is to understand
patterns in temporal daily routines of users to plan assistive
actions.
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Fig. 1: The robot learns patterns in user behavior, and their
effects on object movements from past observations. At run-
time, the robot predicts object relocations, such that the
objects would be in locations where the user will need them
in the near future.

Proactive assistance based on user observations has been
developed in prior work using activity recognition, action
prediction, and planners [5], [6], [7]. For example, a robot
might recognize that the user is making a salad, predict that
they will need lettuce, and grab it for them. However, such
systems are limited to assisting with user’s current activity,
and assume the ability to recognize each user action. They
are difficult to scale to longer time scales, as it is difficult
for a robot to observe each human action and intractable to
recognize them with all their nuances.

We propose a novel perspective on this problem. As
humans go through their daily routines, their activities affect
the objects around them, leaving footprints in the location
and state changes of these objects. For example, in the
morning, someone who has cereal for breakfast might take
out cereal and milk to the counter and afterwards leave the
used bowl in the sink as shown in Figure 2. As such, patterns
in our daily routines are reflected in the movement of objects
in the household, and can be learned by observing such
movements. We propose to leverage the learned dynamics
of objects resulting from the user’s routine, to develop an
actionable understanding of these routines. Information from
objects in the environment has been shown to be a useful
indicator towards reconstructing past agent actions [8], and
in Inverse Reinforcement Learning to train policies based
on human preferences detectable in the environment state
[9]. Through an object-based perspective on understanding
routines, we overcome the constraint of having to constantly
observe the human, and the need to classify nuanced actions.

Explicitly modeling object movements, and learning pat-



Fig. 2: Evolution of object arrangement through breakfast

terns therein, has the benefit of providing actionable object-
level information for downstream assistive action planners.
If an embodied agent can predict a future state of object
arrangement, it can infer the expected changes in object
locations, and relocate the objects in accordance with it.
Hence, we need to create a unified spatial and temporal
object dynamics model, which can learn patterns from ob-
served object movements. A lack of datasets representing
such object dynamics to learn from and/or evaluate on makes
this problem trickier. In this work, in addition to formulating
our problem in this way, we address both these gaps. Our
primary contributions are as follows:

• Formulation of proactive assistance through object dy-
namics modeling

• A behavioral simulation dataset reflecting normal rou-
tines and their effect on household objects

• A generative graph neural network based spatio-
temporal object dynamics model

Our object dynamics model outperforms the baselines
on predicting future object locations, with a 42% average
increase in F-1 score on predicting which objects will move
in a certain predictive window, and 20% average increase in
precision on predicting the correct object destination.

II. PRIOR WORK

Our work involves generating an activity dataset, as well
as creating a predictive model that can learn from object
movement observations, for which we employ a graph neural
network. In this section, we introduce literature relevant to
each of these facets of our work.

A. Activity Datasets

The smart homes and intelligent devices community have
datasets [10] extending to order of months and scaling to
entire houses or offices. However, they are usually collected
using smart sensors which only provide coarse user location
and are annotated with high-level activity labels like reading,
sleeping, cooking etc. They lack object interaction informa-
tion needed for our work.

Datasets created for learning to recognize activities from
videos [11] contain detailed object interaction-level infor-
mation. These datasets however are limited to the specific
activity, extending to time scales of minutes, and only a
small subset of the objects in an environment. The VLOGs
dataset [12] extend to the duration of a part of a day, like
a morning routine, but because the videos are mined from
youtube, these are not continuous, thus missing some actions.
For instance, application of makeup is covered in great detail,

but the act of putting away cosmetics is skipped. The missed
actions are typically associated with putting things away after
use, which are crucial for an assistive robot to learn.

Datasets have been created in simulation environments for
different activities [13], but these also are limited to the
extent of specific activities. We use the same VirtualHome
simulator to create a dataset that accurately reflects normal
daily routines, is complete in its cataloguing of object
interactions, and extends to a longer time horizon of the order
of days.

B. Object Modeling

Spatio-temporal object modeling closely relates to and
extends prior approaches for semantic mapping [14], which
enrich traditional metric and topological maps of households
and other environments by supplementing their description
with high-level information about space purpose, utilization,
object locations, object state etc. Semantic mapping, how-
ever, focuses on consolidating past observations into a single
estimate, as opposed to trying to predict how things will
change in the future.

Informed object search applications have led to methods
on modeling beliefs over object locations. Such methods usu-
ally leverage probabilistic methods combining prior knowl-
edge, observations, and known constraints [15]. Newer meth-
ods [16] leverage correlational information from datasets to
generate semantic priors on the likelihood of inter-object
relations, to inform the belief over possible object locations.
Other methods [17], [18] leverage past experience in the
environment to model a temporal function of existence of
objects of interest in a location.

The information obtained from inter-object relationships is
complementary to the observed location history, and hence
we seek to combine both into a unified spatio-temporal model
of the object dynamics. Spatio-temporal graphs have been
modeled in the robotics community by indirect methods such
as flattening into vectors that can be learnt using RNNs [19].
We maintain the graphical structure of our data, and represent
the object arrangement at a given time using a scene graph,
which is a directed graph with objects as nodes, and inter-
object relations as edges. Scene graphs have been used for
semantic reasoning over images [20], representing objects in
a map [21], etc. Scene graph representations of objects in
video frames have also been used to identify activities [22].
We learn the temporal dynamics over this space of scene
graphs, using a Graph Neural Network.

C. Graph Neural Networks

Our problem requires a generative graph network, condi-
tioned on a graph as well as some global context to encode
time. We derive inspiration from existing work on gener-
ative graph methods conditioned on graphs, mainly in the
domain of molecular biochemistry. These methods either use
encoder-decoder frameworks [23], [24], [25], or step-wise
modification-based methods to convert the input graph to
the output [26], [27], [28]. Since, predicting object locations
involve very few changes on consecutive time steps, we



deem the step-wise edit networks suitable for our application.
Some modification-based networks employ domain-specific
heuristics and rewards for using reinforcement learning to
learn a modification policy [26], [28]. Due to lack of such
heuristics, we derive inspiration from a general graph transla-
tion method, Node-Edge Co-evolving Deep Graph Translator
(NEC-DGT) [27] to learn our predictive model only based
on data. The focus of such methods on edge attributes is
important for our use, since we need to leverage existing re-
lational information in the scenes to be able to predict future
relations. Recent work towards emphasizing information on
edges define a dual-graph by flipping the edges and nodes
[29], to incorporate message passing between edges that have
a node in common. Our method and prior work [27] perform
a similar operation through edge-to-edge message passing
without explicitly defining a dual-graph.

Graph neural networks are traditionally static in time, and
were only recently adapted to model temporally evolving
data [30]. Existing networks have been extended to include
time, by including LSTM units [31], alternating message
passing along the graph and discrete time axis for each node
[32], using a memory structure to retain past information
[33], and learning functional time embeddings similar to
Time2Vec [34] for using self attention [35]. To explicitly
account for known periodicities in data, and directly in-
fluence predictions using data from previous day, week,
etc. in addition to the recent information, prior work [36]
maintain LSTMs over all these cadences. Such a system has
periodicities rigidly defined in its structure, and hence its
ability to learn patterns is strictly limited to known periods.

For traditional graph neural network applications, only the
relative value of timestamps of two graphs is important to
determine how they relate, whereas our model also needs
to derive information from the absolute value of time. For
instance, we aim to learn not only that the user usually has
breakfast after brushing their teeth, but also that they have
breakfast around 8am. We provide our model an embedding
of the absolute time inspired by Time2Vec [34], but with
known frequencies.

III. PROBLEM FORMULATION

We model an environment as consisting of a fixed set of
objects O and locations L. At any given time t, we model the
state of the environment, Xt, as an unordered list of object-
location pairs (oi, li) representing the placement of object
oi ∈ O at location li ∈ L. We assume each object can exist
in only one location at a time, and that objects of the same
class (e.g., one of multiple cereal instances) are uniquely
identifiable. The state of the environment can be modified
by an embodied agent (human or robot) by performing a
relocation action r(o, l1 , l2 ) to move object o ∈ O from
location l1 to location l2 .

Based on the above formulation, we model the object
relocation problem as consisting of two parts. First, given a
set of previous observations of the environment X0:M
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1Which we expect to span multiple periods of the periodic patterns in
object movements.

some time span M , learn the model Φ(Xt, t) → X̂t+δ that
takes the current time t and the state of the environment Xt

and predicts the future state of the environment X̂t+δ some
fixed δ timesteps in the future. Second, we desire the function
Ψ(Xt, X̂t+δ) → R which returns the set of relocations R
required to transition the environment from Xt to X̂t+δ .

IV. SPATIO-TEMPORAL OBJECT DYNAMICS MODEL

We aim to create a unified spatial and temporal model
of object dynamics, which, given sequential observations of
object locations can learn to predict future object movements.
We represent the environment state, Xt, at a given time t as
a directed graph, Gt = {V,E}, consisting of vertices/nodes
representing objects in the environment, V = {vi}, and
edges capturing spatial inter-object relationships, E = {ei,j}.
We represent each object instance as a node, and use the
terms object and node interchangeably.

Our spatial directed graph consists of edges connecting
objects to their locations. We ensure that the graph contains
only non-redundant information by removing edges that can
be deduced from other edges. For instance, if we know
apple in bowl, and bowl on table to be true, then we can
deduce apple on table, hence we remove that edge from our
formulation. This leaves our scene graph with a single edge
originating from every node, representing its most specific
location, for instance bowl for apple in the above example.
Such a structure is called an in-tree, or anti-arborescence,
since every constituent node has a single out-edge, signifying
every object having a single location: N+

i = {vj |ei,j ∈ E},
|N+

i | = 1.
Having represented a discrete time-slice of the object

dynamics as an in-tree, Xt = Gt, we model Φ with respect
to this graph representation. Specifically, we learn

Φ(Gt, t) → p(G̃t+δ)

which predicts a probabilistic graph representing the state
at a future time step given the current graph and time.
p(G̃t+δ) is fully connected, with edge weights representing
probabilities of edge existence, and hence the weights of all
edges originating at a node sum to one. This graph represents
the probability distribution over all possible in-trees, and we
can infer the posterior, Ĝt+δ , by picking the most likely out-
edge for each node:

Ĝt+δ = argmax
G̃t+δ

p(G̃t+δ)

A. Model Architecture

To model the dynamics Φ over scene graphs, we create
a graph translation model inspired by prior work [27]. The
complete architecture is outlined in Figure 3. Traditionally,
GNNs operate over graph topologies built to express similar-
ity between nodes, where message passing serves to smooth
out information across nearby nodes. Our edges, however,
represent physical relationships, and hence, a crucial insight
from such a system performing well is that a message passing
formulation over edges representing physical relationships
can help inference on spatial graphs.



Fig. 3: Model Architecture

Our model produces a probabilistic directed graph as the
prediction for next state. The inputs to our model are the
embeddings for each node and the edge existence/adjacency
matrix of the input graph, as well as an encoding of time.
We use one-hot encodings for each object as the node
embeddings, resulting in a vector with length equal to the
total number of objects (|O|). Our time encoding is similar
to that proposed by Time2Vec [34], which learns a given
number of frequencies, and uses sinusoidal functions of
time over those frequencies. However, rather than having the
network learn the frequencies from data, we use pre-specified
frequencies, and use both sines and cosines for our periodic
functions. We use frequencies corresponding to time periods
τi of 1-day, 12 hours, 6 hours, 3 hours, 1 hour, 30 mins, and
10 mins to induce meaningful priors on periodicity of human
activities, to generate the time encoding (T ) of length 2nτ

T =

[
sin

(2πt
τi

)
, cos

(2πt
τi

)
, ...∀τi

]
With the node features and edge existence as inputs, our

model first generates latent edge features by passing the
edge existence alongwith features of the nodes it connects
through a two layer MLP. The resulting edge features are
then passed into aggregation layers to collect information
from the neighboring edges, and the time context. The first
aggregation step operates on the input graph topology. For
every edge ei, the neighboring edges in the input graph are
divided into four categories: edges that share the same origin
node, that share the same destination node, that originate
from the destination of edge ei, and that end at the origin
of edge ei. Input features from edges belonging to each of
these four categories are aggregated by summation, resulting
in four vectors, which are concatenated along with the feature
of edge ei and the time context, to produce the output feature
for edge ei. In this manner, the aggregation layer generates
features for every edge containing information about itself,
its neighbors and time. These features are passed through
an MLP to generate attention weights for every edge. In the
second round, aggregation is done in a similar fashion, but on
a fully connected graph topology, with the neighboring edge
features being weighed by the attention weights before being
summed. The output of this aggregation is passed through an
MLP to predict the final likelihood of each edge’s existence.

The model in NEC-DGT [27] operates directly on a
fully connected graph topology, without any weights, to
propagate information by edge-to-edge aggregation. This
causes several incoming messages to be summed on each
edge, thus diluting each neighbor’s contribution. We found
this to be sub-optimal for scaling to the number of objects
in a house, so we employed the above attention mechanism.
By predicting the attention weights based on the sparse input
graph topology, we allow the signal from those edges to
be stronger. To avoid limiting the model’s receptive field to
existing neighbors, we allow all edges to contribute in the
second step of aggregation, expecting the learned weights to
emphasize important neighbors.

V. BEHAVIORAL SIMULATION DATASET

To validate our approach to object relocation, we introduce
a novel dataset which captures a diverse set of everyday
household activities that humans perform as they go about
their daily routines, including information on how objects
move throughout a household as a result of those activities.
We used the VirtualHome simulator to collect the data [13],
as it supports human agents, object interaction, and high-
level semantic commands without the need to control low-
level motions. To compile the dataset, we first obtained a list
of activities of daily living relevant to in-home routines from
the activity recognition literature [37]. Specifically, we used
the following list:

bathe or shower brush teeth
clean clean kitchen
come home computer work
connect with friends do laundry
get dressed leave home
listen to music play music
prepare and eat breakfast prepare and eat dinner
prepare and eat lunch read
take medication take out trash
use restroom vacuum clean
wash dishes watch TV

We then sourced our dataset using a two-tier strategy, sep-
arately sourcing high level activity schedules comprising of
the above activities, and the low level action sequences to
perform each activity.



(a) Persona A: Distribution of dominant activities (b) Persona B: Distribution of dominant activities

(c) Persona A: Schedule Samples for 45 days (d) Persona B: Schedule Samples for 45 days

Fig. 4: Activity distributions and schedule samples of two personas are compared here. Notice how common activities like
showering, breakfast, dinner are present at roughly the same time for both, expressing common activities that everyone
would do. But there are activities specific to that persona, for instance Persona A does cleaning and prefers to socialize in
the evening, and Persona B doesn’t leave the house, takes medicines regularly and prefers watching TV in the evenings.

A. Activity Schedules

To obtain realistic activity schedules, we surveyed various
workers on Amazon Mechanical Turk. First, we asked each
worker about the most likely activities they would be doing
during each hour of the day from 6am to 12am, from which
we obtain a set of activities for every hour of the day for
that individual. We obtain probabilities for activities in each
hour by normalizing with the maximum number of activities
in an hour, and assign the remaining probability to an ‘idle’
activity. In this manner, we get a probabilistic temporal
model of activities that the individual does through the day.

We induce more variability by generating personas from
this data. We find semantically meaningful traits for every
activity, like having early v.s. late dinner, or brushing twice
v.s. once a day, and, by combining data from participants
who follow that habit, we generate a temporal distribution
for that activity characterizing the specific habit. We then
compose four diverse fictitious personas as a combination
of such habits for every activity. These persona distributions
lead to more stochastic schedule samples, and exhibit both:
common activities that they all do, as well as specific activ-
ities that are unique to each persona. These similarities and
differences can be observed in the final datasets generated
for these personas, as shown in Figure 4, where the activity
distributions, as well as schedule samples are compared for
two of the personas.

B. Action Sequences

We use the VirtualHome simulator to collect scripts for
the implementation of each activity from the above list.
We recruited 23 participants to compose step-by-step action
sequences, defining movement of the avatar and the avatar’s
interactions with various objects, to recreate each activity
in simulation. For example, for the breakfast activity a
participant might utilize actions like walk to cabinet, grab
cereal, put cereal on counter, and so on. Ensuring that
the action sequences start from a fixed home state of the
environment allows us to later compose them into complete
routines. Along with the actions, we also source the estimated
duration ranges needed to do those actions. The outcome is
a set of action sequences, along with time duration ranges
needed to perform each action, for all activities.

C. Schedule Sampling

From the obtained temporal activity distributions and
action sequences, we use Monte Carlo sampling to generate
complete daily routines executable on VirtualHome simu-
lator. We set the start time for our daily routine as 6am.
Starting at that time, we first sample an activity from the
schedule distribution. We then choose an action sequence
for that activity, and sample durations for each of those
actions. From the action durations, we calculate the end time
of that activity, and sample the next activity at that end time.
By iteratively sampling the activity and action sequences
in such a manner, we compose complete daily schedules,
examples of which are shown in Figure 4. These complete



routines, composed of action sequences, when executed on
the simulator, provide a sequence of object arrangements in
the environment, from which we derive our states Xt.

VI. EVALUATION

We test our predictive model on all four of our persona
datasets, and compare against the following baselines on
metrics measuring the ability to correctly predict changes.
We use 20 hidden layers with ReLU activation to construct
each of the our MLPs. We use Adam optimizer with a
learning rate of 10−3. Starting with a known graph Gt at time
t, we use our network to predict the probabilistic graph one
step into the future p(G̃t+1). We feed the probabilistic model
back into the model, and run it iteratively to predict further
into the future, and finally derive our posterior estimate Ĝt+δ

for the desired future timestep.

A. Baselines

We compare the performance of our predictive model
against two baselines:

• Static Semantic baseline, adopted from [16], employs
static priors on object-object relations. This baseline
calculates prior probabilities of existence of each object-
object relation using the training set. Given a state at
time t, the model adds noise to the belief over object
locations, and then updates the resulting belief using
the prior likelihood. To adapt to our topological map
formulation, we use a tunable probability of change for
the noise model and spread belief uniformly over all
other topological locations, as opposed to the nearby
areas in metric space as done in the original work.

• FreMEn baseline, adapted from [17], uses past experi-
ence to model the probability of existence of relation-
ships between object pairs as periodic functions in time.
We maintain beliefs over topological relations instead of
the metric occupancy grid formulation in the original
work. The final belief is a combination of the prior
graph and the learned periodic temporal priors, with
a tunable time-decaying weight as suggested in their
implementation.

The priors for both these baselines are derived from the same
training data that is used to train our model.

B. Metrics

For assistive applications, we primarily care about cap-
turing where objects will move in the future, so we focus
our evaluations on accurately predicting such changes. We
express such changes as object relocations, r(oi, l1 , l2 ), sig-
nifying the movement of object oi from its original location
l1 to destination l2. The set of such relocations, R̂t:t+1,
predicted to happen between time t and t+1 can be written
as

R̂t:t+1 = {r(oi, l1 , l2 )|ei,l2 ∈ Ĝt+1, ei,l1 ∈ Ĝt, l2 ̸= l1}

We would however want our robot to predict farther into
the future to predict changes earlier in time. Based on a
proactivity parameter δ, the agent can try to predict changes

δ-steps into the future to predict relocations, R̂t:t+δ , by
collecting the first predicted relocation for every object while
sequentially predicting scenes from time t to t+ δ

R̂t:t+δ = R̂t:t+δ−1

∪ {r(oi, l1 , l2 )|r(oi, l1 , l2 ) ∈ R̂t+δ−1:t+δ,

r(oi, l1 , l3 ) /∈ R̂t:t+δ−1}

In addition, we can extract the set of objects that are
relocated as a part of relocations R as

O(R) = {oi|r(oi, l1 , l2 ) ∈ R}

We evaluate the relocations predicted by our model
against the actual relocations from the ground truth sequence
(Rt:t+δ). Our objective is for the robot to be proactive, and
as a result we seek to make relocation predictions ahead
of the actual relocation actions that would be carried out
by the human. The exact order and precise timing of the
robot’s relocations is not critical as long as they occur
before the human-generated event (e.g, the cereal or bowl
could be taken out first). Hence, we measure the predictive
performance of changes over the entire proactivity window,
using the following metrics to capture how well the model
predicts the objects that are relocated in that window and
their destinations.

• Precision : The fraction of objects predicted to relocate
in the δ-step window (O(R̂t:t+δ)) that are correct.

Pt =
|O(R̂t:t+δ) ∩ O(Rt:t+δ)|

|O(R̂t:t+δ)|
• Recall : The fraction of objects that actually relocated

in the p-step window (O(Rt:t+p)) that were correctly
predicted

Rt =
|O(R̂t:t+δ) ∩ O(Rt:t+δ)|

|O(Rt:t+δ)|
• Destination Accuracy : This metric to measures how

well the model predicts the destinations of the relocated
objects. For this we compare the predicted set of relo-
cations (R̂t:t+δ) against the ground truth (Rt:t+δ).

Dt =
|R̂t:t+δ ∩Rt:t+δ|

|Rt:t+δ|
VII. RESULTS

We compare our model against the baselines on all three
metrics of precision, recall and destination accuracy defined
above, as well as F-1 scores calculated using the precision
and recall. We compare performance for proactivity of 10
minutes to 2 hours with increments of 10 minutes, across
four persona datasets. We also show the importance of the
attention mechanism in our model, and our time encoding
through ablations.

For all levels of proactivity, our method consistently
predicts a larger fraction of the relocated objects and their
destinations, achieving higher recall and destination accu-
racy, with fewer false positives, compared to the baselines.



Method F-1 score Precision Recall Destination
Accuracy

Stat.Sem. 0.1695 0.3591 0.2175 0.1798
FreMEn 0.2481 0.4461 0.3098 0.3122
Ours 0.4185 0.4741 0.3713 0.4423

TABLE I: Comparison of average metrics for our method
against baselines

(a) F-1 scores of our method compared against baselines on
predicting objects that relocate in the proactivity window. Each
column represents a proactivity window starting from 10 mins
to 2 hrs in increments of 10 mins.

(b) Precision-Recall comparison of our method against base-
lines with lighter markers depicting longer proactivity win-
dows. Each column represents a proactivity window starting
from 10 mins to 2 hrs in increments of 10 mins. Our method
beats the baselines on both precision and recall for most of
the proactivity windows.

Fig. 5: F-1 score and precision-recall

Average metrics for our method compared against baselines
are shown in Table I.

Our method consistently gets a better F-1 score than each
baseline for all proactivity steps, as shown in Figure 5a. Our
model outperforms the baselines nearly consistently on both
precision as well as recall, as shown in Figure 5b. In using
such predictions to provide assistance, a higher recall enables
the robot to predict more movements correctly, which allows
for a better level of assistance, while fewer false positives
makes the user more likely to continue using the system.

Our method is significantly superior to the baselines on the
precision metric. This is because the baselines make a larger
number of relocation predictions, including a large number
of false positives, which outweigh the correct predictions, as
can be seen in Figure 6.

Our method shows superior recall and destination ac-

(a) (b)

Fig. 6: Figure (a) shows the objects correctly predicted to
relocate relative to the total predictions. The ratio of these
quantities is the precision, which is shown in Figure (b).
Each column represents a proactivity window starting from
10 mins to 2 hrs in increments of 10 mins.

(a) (b)

Fig. 7: Figure (a) shows the correctly predicted relocated
objects and their destinations relative to the total objects that
were relocated. The ratio of these quantities are the recall
and destination accuracy, which are shown in Figure (b).
Each column represents a proactivity window starting from
10 mins to 2 hrs in increments of 10 mins.

curacy, which are expanded in Figure 7. The destination
accuracy metric is a stricter version of the recall metric
as it measures the fraction of relocated objects as well as
their destinations that are correctly predicted in the δ-step
window. As we increase the proactivity steps, more flexibility
is allowed in predicting the exact time of relocations, but it
becomes harder to predict changes further into the future.
These changes are reflected in the performance of both our
method and the FreMEn baseline, where an improvement in
recall and destination accuracy is seen initially as we increase
proactivity, and as we look further ahead, the uncertainty
in predictions causes a drop in these metrics. The Static
Semantic baseline predicts a very large number of relocations
in total, which could explain why it gets a larger recall, with
a widening gap between recall and destination accuracy, as
we increase the proactivity steps.

We perform an ablation to measure the impact of our
attention mechanism. We compare against a version of our
model with message passing over all edges without any
weighting, similar to NEC-DGT [27]. Our model achieves
a significantly better precision and also better recall and
destination accuracy as shown in Figure 8.

We also perform an ablation using a linear representation
of time in our model instead of the periodic functions. We
simply feed in a single number representing the timestamp
in minutes. This causes a significant drop in performance
across all three metrics as shown in Figure 9

VIII. CONCLUSION

In this paper, we present an object-centric perspective
to providing proactive assistance in robotics. We present a
method to create a behavioral dataset representing natural



Fig. 8: Comparison of our method against a version without
the attention mechanism over evaluation metrics of precision,
recall and destination accuracy

Fig. 9: Comparison of our method against a version without
the periodic time encoding over evaluation metrics of preci-
sion, recall and destination accuracy

daily routines and their effect on objects, and propose a
method that can leverage such data to learn a predictive
model which can be used to plan assistive actions. We show
that our method exhibits better predictive performance than
our baselines on a variety of metrics motivated by the end
goal of planning assistive actions.

Our method’s ability to outperform both semantic and tem-
poral priors lends confidence to our hypothesis that temporal
patterns in our daily activities reflect in the combined spatial
and temporal evolution of objects involved. The ability to
pick up such patterns is useful in scenarios where rule-based
goals are hard to pre-define and it is difficult for the user to
command specific goals, both of which are often the case in
assisting an elderly user or a user with cognitive impairments
in their day-to-day life.
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