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Abstract

Robots are increasingly transitioning from specialized, single-task machines to general-purpose systems that operate in
diverse and dynamic environments. To address the challenges associated with operation in real-world domains, robots
must effectively generalize knowledge, learn, and be transparent in their decision making. This survey examines Se-
mantic Reasoning techniques for robotic systems, which enable robots to encode and use semantic knowledge, including
concepts, facts, ideas, and beliefs about the world. Continually perceiving, understanding, and generalizing semantic
knowledge allows a robot to identify the meaningful patterns shared between problems and environments, and therefore
more effectively perform a wide range of real-world tasks. We identify the three common components that make up a
computational Semantic Reasoning Framework: knowledge sources, computational frameworks, and world representa-
tions. We analyze the existing implementations and the key characteristics of these components, highlight the many
interactions that occur between them, and examine their integration for solving robotic tasks related to five aspects of
the world, including objects, spaces, agents, tasks, and actions. By analyzing the computational formulation and un-
derlying mechanisms of existing methods, we provide a unified view of the wide range of semantic reasoning techniques
and identify open areas for future research.
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e knowledge sources from which raw data is received
and semantic knowledge can be extracted,

1. Introduction

Robots are increasingly transitioning from specialized,

single-task machines to general-purpose systems that op- e computational frameworks that define mathematical
erate in diverse and dynamic environments. To address relationships relating known concepts, and that are

the challenges associated with operation in real-world do- used to perform inference (e.g., Bayesian networks),

mains, robots must effectively generalize knowledge, learn, and
and be transparent in their decision making. This survey
examines Semantic Reasoning (SR) techniques for robotic e world representations that enable the robot to model

its environment (objects, spaces, and agents) and
behaviors (actions and tasks).

systems, which enable robots to encode and use seman-
tic knowledge, including concepts, facts, ideas, and beliefs
about the world. Just as recognizing linguistic semantics
helps a human interpret language, continually perceiving,
understanding, and generalizing semantic knowledge al-
lows a robot to identify the meaningful patterns shared
between problems and environments, and therefore more
effectively perform a wide range of real-world tasks. SR
leverages semantic knowledge as an abstraction to connect
previous experience with new situations, as a structured
prior to guide robots efficiently explore new environments
and problem domains, and as a common language to ex-
change motives and rationales with humans.

In this survey, we identify the three common compo-
nents (Figure [1]) that make up a computational Semantic
Reasoning Framework (SRF):

Though semantic reasoning has been applied to a wide
range of robotics problems, to our knowledge there exists
no established structure for concretely placing work within
the broader field. Even approaches solving similar prob-
lems often make different assumptions, and their relations
to the rest of the field remain largely unaddressed. A cate-
gorical structure therefore aids in comparative assessments
among applications, as well as in identifying open areas for
future research. In contributing our categorization of cur-
rent approaches, we aim to lay the foundations for such a
structure.

The remainder of this section formally discusses the
space of SR problems and places this survey in the con-
text of existing research. Section[2] presents the key design
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decisions for developing a semantic reasoning framework.
Sections and [5] each cover one of the three core SRF
components listed above. Section [f] follows by analyzing
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Figure 1: Three core components of semantic reasoning frameworks and five aspects of the world to which semantic reasoning can be applied.

SR applications enabled by the integration of SRF compo-
nents. To conclude, we discuss open areas of research for
future work in Section

1.1. Problem Domain

The space of problems in semantic reasoning for robotics
is large and growing. In this survey, we divide the prob-
lem domain into categories related to five entity types:
objects, spaces, agents, tasks, and actions. Semantic rea-
soning about objects, spaces, and agents allows a robot to
better understand its environment, while reasoning about
tasks and actions aids a robot in achieving more context-
aware and robust operation in complex environments. The
division of the problem domain into these five categories,
along with the three core components our survey is or-
ganized around, allows prior systems and problems to be
fully categorized and compared.

Additionally, each of the five categories is inherently
different in the modalities and underlying structures of
its related data. For example, objects can be modeled as
independent entities linked by common attributes and af-
fordances. Tasks, on the other hand, require sequential or
hierarchical structures to connect causes and effects. How-
ever, the distinctions between these problem categories do
not prevent them from overlaps and interactions. In fact,
one of the strengths of a multi-modal, multi-relational, and
multi-domain robot SRF is to enable all concepts to inter-
act and contribute to decision making.

1.2. Survey Scope and Context

This survey introduces the audience to the general sub-
ject matter of semantic reasoning within robotics, orga-
nizes the technical contributions in space of semantic rea-
soning for robotics, and gives insight into design decisions

along with the implications that should be taken into ac-
count for implementations on robots.

Within the published literature, reasoning about world
knowledge has been studied in a variety of distinct areas,
including knowledge representation and reasoning, com-
monsense reasoning, ontology-based reasoning, contextual

reasoning, knowledge-enabled robotics, and cognition-enabled

robotics. Some of these areas, such as cognition-enabled
robotics, draw the analogy with the human mind, while
others, such as ontology-based reasoning, focus on imple-
mentation specifics. Due to the different emphases of these
areas, the approaches proposed within them intersect but
do not completely overlap.

We refer to the general category of algorithms that rea-
sons about world knowledge as semantic reasoning. Re-
garding our chosen organization, we note that many le-
gitimate criteria could be used to subdivide SR research.
Our review aims to analyze the fundamental mechanisms.
We therefore categorize existing approaches according to
the techniques required to develop a semantic reasoning
framework in robotic applications. By analyzing the com-
putational formulation and underlying mechanisms of ex-
isting methods, we aim to provide a united view of the
wide range of techniques.

Interested readers may also find useful other surveys re-
lated to semantic reasoning for robotics. A broad overview
of the cognitive skills required for robot manipulation in
the human environment is presented in [I]. The work dis-
cusses methods for tackling different subproblems, such as
learning affordances and human-robot collaboration. A
more focused discussion of knowledge representations for
service robotics is presented in [2], covering both com-
prehensive and specific knowledge representations. An-
other survey, [3], highlights algorithmic details for using



logic, probabilistic, and planning-based techniques to rea-
son about robot-related concepts, such as time, space, and
action plans. Additional reviews related to sub-areas of SR
research are highlighted in respective sections throughout
the article. Our work differs from the above publications
in that it seeks to present a broad perspective on semantic
reasoning for robotics, highlighting the many dependen-
cies, inter-relations, and interactions that occur between
the core components of a SRF.

2. Design Choices

A developer faces many design choices when construct-
ing a SRF. Some of these decisions may depend on the
problem, while others are up to the preference of the devel-
oper. As we discuss in later sections, these design choices
strongly influence how the reasoning task is structured and
solved. In this section, we highlight several key decisions
with a running example in which a robot is tasked to make
a cup of tea.

As design choices exist in all three core components
of a semantic reasoning framework — knowledge source,
computational framework, and world representation — we
organize this section accordingly. Despite the order pre-
sented here, the designing process is flexible and can vary
case-by-case.

Knowledge Source: Developers must consider which
types of knowledge are available to the robot, and how
they can be represented. Knowledge sources used to seed
semantic reasoning frameworks can be categorized as con-
taining class-level knowledge that generalizes across an
entire class of entities (e.g., “cups are often found in
cupboards”) or instance-level knowledge that pertains to a
specific instance of an entity (e.g.,“blueCup2 is on the
table”). Other factors that influence knowledge acqui-
sition include data quality, recoded data modalities, and
data representation structure.

Computational Framework: When selecting a compu-
tational framework to store semantic knowledge and sup-
port inference, a developer must consider five essential
characteristics: the need to model uncertainty, expressive-
ness, adaptability, explainability, and scalability. The se-
lection of a computational framework further depends on
the requirements from other design choices and their as-
sociated effects, such as the scale of the problem and the
noise level in the selected knowledge sources.

World Representation: A semantic reasoning frame-
work must capture details about the world that are rel-
evant to the reasoning capabilities and objectives of the
system. Most existing framework model some subset of
objects, spaces, tasks, actions, and agents. For example,
for finding a teacup, we may model space semantics, user
preferences, or even object affordances, to help determine
likely object locations. Semantic knowledge is most often
represented as symbols. Symbols are discrete and abstract,

therefore reduce the dimension of semantic space and fa-
cilitate generalization. Within our example, the action of
a robot grasping and lifting a teacup can be abstractly en-
coded as pickup cup. Alternately, non-symbolic represen-
tations can be used, such as a point cloud representation of
the object. When designing a semantic reasoning frame-
work, whether to use symbols depends on many factors
such as interpretability, the desired level of abstraction,
and the complexity of the data.

Developers must carefully consider each of the core
components for semantic reasoning when designing a com-
plete system. Furthermore, interactions between choices
made in each component must be compatible. The follow-
ing sections describe existing implementations of each core
component and discuss the synergy of these components
to achieve semantic reasoning.

3. Knowledge Sources

Observations of the world through onboard sensors pro-
vide the most direct and easily accessible information to
a robot. Prior to being incorporated into a semantic rea-
soning framework, raw sensor readings are typically ab-
stracted into more compact representations [4l Bl [6]. How-
ever, learning all knowledge from scratch only through lo-
cal observations is inefficient, particularly for robots that
must perform multiple tasks or operate in multiple envi-
ronments. Thus, it is useful for robots to have access to
other, more general, sources of data that can be mined to
supplement knowledge obtained from local observations.

In this survey, we define the most important charac-
teristic of a data source as whether it contains class-level
or instance-level knowledge. As discussed above, class-
level knowledge facilitates generalization across domains
and provides a prior for new situations, whereas instance-
level knowledge allows concepts to be physically grounded
and applied in robots’ interactions with the world. Ulti-
mately, a robust semantic reasoning framework must have
the ability to reason about both types of information, as
well as to perform information exchange across these com-
plementary and interdependent data types. In section, we
discuss data sources — knowledge bases, datasets, and on-
tologies — of both types, as well as the interaction between
them.

8.1. Class-Level Knowledge

Class-level knowledge is often symbolic and represents
information that is asserted across domains, or that gener-
alizes across an entire class of entities. Class-level knowl-
edge is available in various sources, such as encyclopedias,
formalized knowledge bases, and specialized semantic net-
works. Respectively, these sources provide different types
of information, such as summaries of concepts from dif-
ferent disciplines, common-sense knowledge, and domain-
specific knowledge pertaining to robots. Table [I| shows
a representative list of class-level knowledge sources that



AfNet [

An ontology of affordances for over 250 commonly found object classes. AfNet de-
scribes unique geometric mappings for each affordance (e.g., Contain-ability is defined
by high convexity). AfNet also includes definition of object classes in terms of affor-
dances and topological structures of components. Sample use cases: [8, 9]

ConceptNet [10]

A large-scale knowledge graph encoding common-sense knowledge from various
sources, including the Open Mind Common Sense (OMCS) project [II], WordNet
[12], OpenCyc [13], DBPedia [14], and etc. Data is organized as a weighted graph
structure, with edge weights used to convey the estimated reliability of the informa-
tion. In total, ConceptNet stores over 8M nodes and 21M edges, with 1.5M nodes in
English. Example edge relations particularly useful for robotic applications include
IsA, AtLocation, HasProperty and UsedFor. Since information comes from various
sources and are partially mined in an unsupervised way, inaccurate information is
common within the dataset. Sample use cases: [15} [16] 17, 18]

KnowRob
Ontology
[15] 191 20) 21]

A robot-centered ontology built on top of OpenCyc. The ontology includes 8K classes
covering both a broad range of human knowledge and domain-specific knowledge for
robots such as everyday tasks, household objects, and robot parts. The most impor-
tant branches are the TemporalThings describing temporal concepts such as events
and actions, Spatialthings describing spatial concetps such as places, objects, and
body parts, and MathmaticalObjects describing abstract concepts such as coordinate
systems and linear algebra. Sample use cases: [15], 22] 23| 21]

Open Robots
Ontology

(ORO) [24]

An ontology that focuses on concepts useful for human-robot interaction. Similar to
the KnowRob ontology, the Open Robots ontology inherits OpenCyc concepts such
as TemporalThings and Spatialthings. The ontology includes additional agent related
concepts like desiredBy, focusedOn, and BodyPart. This ontology is also hand coded
and has minimum amount of noise. Sample use cases: [24} 25]

OpenCyc [13]

A publicly available subset of the Cyc ontology, which contains formalized common
sense knowledge suitable for reasoning and problem-solving in a variety of domains.
OpenCyc consists of over 40K terms and over 200K handcrafted commonsense axioms,
including taxonomic information and semantic knowledge (i.e., additional facts and
rules of thumb). Sample use cases: |26 15l 24]

WikiHow
FHow

and

Public websites containing more than 1M step-by-step how-to guides, providing nat-
ural language instructions for various tasks, including thousands of household tasks
for everyday activities. Because these databases are designed for human users, the
instructions often assume prior domain knowledge or require common-sense reasoning
to complete. Sample use cases: [27, 28, 29, [18]

Wikipedia [30)

A multilingual, web-based, free-content encyclopedia containing over 40M articles.
For robotics applications, it can be used to mine general knowledge about classes of
objects. Sample use cases: [20]

WordNet [12] A large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped
into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets
are interlinked by means of semantic and lexical relations, such as Hyponymy and
Meronymy. Sample use cases: [15], 26, 3T, 1§]

YAGO [32) A large knowledge base automatically extracted from Wikipedia categories, Wikipedia

infoboxes, WordNet, and GeoNames. YAGO combines the clean taxonomy of Word-
Net with the richness of the Wikipedia category system, assigning the entities to more
than 350K classes. The knowledge base contains over 16M entities anchored in time
and space, further connected to each other by 76 hand-defined relations. Due to the
selective way information is mined, the data encoded in the dataset is relatively free
of noise. Sample use cases: [33]

Table 1: Class-Level Knowledge Sources




Noise Level
High

‘ Low ‘
KnowRob,
ORO, YAGO,
OpenCyc,
WordNet

AfNet,
KnowRob,
ORO, YAGO,
OpenCyec,
WordNet

| Ordered | WikiHow | |

‘ Unstructured‘ Wikipedia ‘ ‘

Hierarchical

Graph-
Based

ConceptNet

Data Structure

Table 2: Grouping of Class-Level knowledge sources by Data Struc-
ture and Noise.

have been utilized in prior work to seed semantic reasoning
frameworks with information. We provide a detailed de-
scription for each knowledge source, emphasizing its con-
tent and intended use. In addition to the types of infor-
mation, each of the knowledge sources can further be char-
acterized by two factors that affect the design of semantic
reasoning frameworks, the structure and noise level of the
data, as shown in Table

3.1.1. Structure of Class-Level Knowledge

The structure of the data encoded in a knowledge base
determines what relations can be stored and what infer-
ences can be made from the data. Hierarchical data struc-
tures, such as WordNet and OpenCyc, encode super-/sub-
class relations (e.g., isA(apple, fruit)), thereby facilitating
generalization. Graph-based data structures, such as Con-
ceptNet, encode the data in a flat, highly inter-connected
representation (e.g., hasProperty(apple, green) and atLoca-
tion(apple, table)), which is more commonly used to rep-
resent highly varied or probabilistic data. Ordered data
structures organize data according to certain metrics; for
example, WikiHow data is ordered chronologically. Fi-
nally, unstructured data, such as that found in Wikipedia,
contains statements and facts that must first be extracted
or parsed before they can be applied to robotic systems.
Many knowledge sources that aim to capture a wide variety
of information have multiple structures; for example, Con-
ceptNet has both class hierarchies and multi-relational in-
formation. The structure of the knowledge source is an im-
portant consideration in the design of semantic reasoning
frameworks because the structure impacts how knowledge
can be applied. For example, the step-by-step instructions
in WikiHow naturally map to the sequential arrangement
of actions in a task, whereas the hierarchical data encoded
within WordNet can be used to better understand the ob-
jects the robot is dealing with in the world.

3.1.2. Imperfect Class-Level Knowledge

Class-level knowledge is imperfect as it often has noisy
and missing information. The noise of the data determines
how much the information can be trusted, and therefore
influences the choice of world model and computational
framework used within a semantic reasoning framework.
Inaccurate information may result from knowledge sources
being crowdsourced or automatically mined; many of the
existing data sources have avoided this problem through
hand-coding by experts (e.g., WordNet) or strong verifica-
tion policies (e.g., Wikipedia). In general, the amount
of noise present in the data affects the choice of com-
putational framework to be used for semantic reasoning,
with probabilistic methods being favored when the data is
noisier. As another form of imperfect information, miss-
ing data is an issue that is harder to avoid and faced
by any dataset to some degree. Despite containing mil-
lions of facts, large-scale knowledge bases still suffer from
this problem [34]. When key concepts are missing from a
knowledge source, no evidence is available to support im-
portant inferences. For example, when any one of the two
concepts: milk is perishable and perishable food is stored in
refrigerators is missing, the robot may be unable to deduce
that milk should be stored in a refrigerator. Techniques for
combining multiple knowledge sources [35] and explicitly
inferring missing information [36] can help mitigate issues
regarding incomplete knowledge.

3.2. Instance-Level Knowledge

Instance-level knowledge refers to knowledge that de-
scribes specific instances of a class of entities. To con-
nect individual instances to abstract class-level concepts,
instance-level knowledge typically includes a text-based la-
bel or description in addition to its raw data. Table
presents a list of instance-level knowledge sources that
have been utilized in prior work. Unlike in the case of
class-level knowledge, there is little structure to the data,
with most sources consisting of sets of images or lists of
entities. Noise remains a contributing factor, with some
sources being more reliable than others. However, the
most important characteristics of instance-level knowledge
sources are the modality of the data and its generalizability
(Table [4)), which we discuss next.

8.2.1. Data Modalities of Instance-Level Knowledge
Instance-level knowledge must encode the specific dis-
tinguishing characteristics of individual entities, thus re-
lying on richer data modalities, including image, depth,
shape, trajectory, and pose information. By contrast, in-
formation in class-level knowledge sources is typically en-
coded in the form of text as commonalities of instances
allow for the use of compact and abstract textual represen-
tations. For instance-level knowledge, the most commonly
used modality is image data, supporting the common id-
iom “a picture is worth a thousand words”. Frequently,
multiple modalities are used to capture the details of a



50 Salad
Dataset [37]

A video dataset containing 50 video sequences of 25 people preparing two different salad recipes,
which focus on complex interactions between hands, tools, and manipulable objects. Data includes
synchronized RGB-D video and accelerometer data of all the kitchen tools. The periods before,
during, and after each action being demonstrated are temporally marked and annotated as pre-,
core-, post-phases for ground truth phases of each action in the recipe. Sample use cases: [38]

AI2Thor [39)

A virtual simulator that includes 30 highly realistic kitchens, bedrooms, bathrooms, and living
rooms (120 rooms total) with actionable objects and physics. Simulated actions include pick up,
put down, open, and close (e.g., pick up tomato, open microwave). The simulator provides class
names and location information for all objects. Sample use cases: [40]

Amazon,
FEbay, etc.

Consumer product websites that offer a wealth of knowledge specific to each type of product. The
data is constantly monitored by manufacturers, customers, and sellers so mistakes are relatively
infrequent. Previous works have scraped such websites to obtain item size, weight, description,
and image information. Sample use cases: [15] [31]

COCO [M]

A large-scale object detection, segmentation, and captioning dataset. The dataset contains over
200K labeled images of approximately 1.5M object instances, labeled within 80 unique object
categories (e.g., fork, dog) and 91 stuff categories (e.g., sky, grass). These objects and stuff are in
context and include segmentations with roughly 5 captions per image. In addition to object and
stuff, COCO also includes 250K instances of people with labeled keypoints that include the body,
limbs, and facial features. Sample use cases: [42]

COLD-
Stockholm
[43]

A dataset consisting of sequences of image, laser range and odometry data for 47 areas belonging
to 15 different semantic and functional categories and under several different illumination settings
(e.g., cloudy vs sunny weather). Sample use cases: [44] [45]

ImageNet
146]

A large-scale image database that provides an average of over 600 images for the majority of synsets
in WordNet (5K synsets and 3.2M images in total). The data is organized hierarchically into 12
subtrees by several types of WordNet reltions (e.g., IsA), including topics such as furniture, tool,
and fruit. Images of each concept are quality-controlled and human-annotated, resulting in average
labeling precision of 99.7%. Sample use cases: |26, [31]

Matterport3D
47

A dataset containing 10K aligned 3D panoramic views from 194K RGBD images of 90 building-
scale scenes of real environments. All data is captured with Matterport’s Pro 3D Camera, and the
3D scenes are hand-labeled with instance-level object segmentation and classifications. Sample use
cases: [48]

ShapeNet
[49]

A large-scale dataset of 3D CAD models of common objects, organized based on the WordNet
taxonomy and including semantic annotations such as real-world dimensions and material compo-
sition. The dataset contains 3M 3D shape models, including 220K categorized shape models into
1 of 3135 categories from WordNet synsets. Sample use cases: [50]

Stanford
40 Action
Dataset [51]

A medium-scale image dataset labeled with bounding boxes of each person in the image, and the
name the action being performed. The dataset contains 9K images, with 180-300 images per action
class. Sample use cases: [31]

SUNCG 2]

A virtual simulator with 45K scenes, each scene containing multiple rooms that include bedrooms,
kitchens, bathrooms, living rooms, offices, etc. Each room contains objects rendered using meshes
which are all semantically labelled, positioned and sized with real world dimensions, and provide
full segmentations. Sample use cases: [53]

TACoS
Cooking
Dataset [54]

A video dataset containing crowdsourced descriptions of cooking activities. Each video is annotated
with descriptions at three levels of detail: (1) a detailed description with at most 15 sentences,
(2) a short description with 3 to 5 sentences, and (3) a single sentence. The dataset includes 185
videos, and approximately 20 description triplets for each video. Sample use cases: [31]

Visual
Genome [55]

A large-scale image dataset consisting of 108K images of 75K unique objects all of which are part
of the WordNet taxonomy. Each image is structured as a graph where nodes are concepts (e.g.,
dog, woman, helping) and edges have predicates specify relations (e.g., in, on). Additionally, the
graph also includes object attributes about abstract concepts (e.g., shirt is pink, girl is young) and
region descriptions (e.g., the woman teaching the little girl to cook). Sample use cases: [42]

SG1700
Dataset [50]

A grasping dataset consisting of 14K semantic grasps for 44 objects and 7 manipulation tasks.
Each grasp is labeled as appropriate or not based on the context of the grasp, which includes the
corresponding task, object class, object state, object material, and affordances of object parts.
Sample use cases: [50]

Table 3: Instance-Level Knowledge Sources
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Table 4: Grouping of Instance-Level knowledge sources by Data
Modality and Domain Generalization

scene or task. For example, the 50 Salad Dataset records
users making salads with synchronized RGBD videos and
accelerometer data of multiple kitchen tools. Reasoning
about multimodal information is nontrivial because mak-
ing inference across different modalities is challenging. How-
ever, multimodal instance-level knowledge is essential to
achieve precise grounding of abstract concepts, as well as
for robust task execution.

3.2.2. Generalizability of Instance-Level Knowledge

The second critical factor for instance-level data is its
degree of generalizability across domains. In Table [4] we
distinguish datasets that are designed for a single appli-
cation (e.g., classification) or domain (e.g. kitchens), v.s.
multiple applications/domains. Examples of data sources
designed to address a single application/domain include
the TACoS Cooking Dataset, which is only concerned with
cooking, and COLD-Stockholm, which applies only to a
specific set of indoor office environments. Multipurpose
data sources, such as COCO and AI2Thor, contain an-
notations useful to multiple types of applications (e.g.,full
object segmentations with labels for object detection and

classification) or multiple domains (e.g., images from kitchens,

bathrooms, and bedrooms).

3.83. Integrating Class and Instance Knowledge

It is critical to highlight the complementary nature of
class and instance knowledge. Class-level knowledge cap-
tures high level, generalizable patterns in the data, while
instance-level knowledge enables those abstract concepts
to be grounded to a specific environment, as well as cap-
tures the statistical characteristics of the data. When ei-
ther type of knowledge is used alone in a semantic rea-
soning framework, undesirable simplifying assumptions of-
ten have to be made. When class-level knowledge is used
alone, the process to ground abstract concepts, known as
the symbol grounding problem [57, 58], is usually simpli-
fied. For example, grounding has been simplified by manu-
ally defining mapping functions [59], using visual cues such
as fiducial markers [25], or representing objects as blocks

Has3DModel

In (1.5) In (0.4)

Near (0.6)

Figure 2: An example semantic graph that includes multimodal data,
different types of relations, and local confidence values defined for
edges (shown as values in parentheses). The confidence scale is not
bounded.

with different colors and shapes [60]. When instance-level
knowledge is used alone, general rules in the domain are
induced solely from raw data and no prior knowledge is
incorporated [61} [62, 66]. Ultimately, a robust semantic
reasoning framework must have the ability to reason about
both types of information.

At the data level, the synergy between class and in-
stance knowledge can be facilitated through several instance-
level knowledge sources, such as ImageNet, ShapeNet, and
Visual Genome, which integrate both class and instance
knowledge by organizing instances according to the Word-
Net hierarchy. At the system level, multiple techniques
have been developed for integrating instance and class
knowledge [63] 64], as will be examined more closely in
Section

4. Computational Frameworks

Given data acquired from one or more of the data
sources described in the previous section, we now discuss
computational frameworks — the organizational structures
that enable robots to reason about semantics in the data.
A wide range of computational methods has been applied
across the literature for knowledge representation and rea-
soning, with no single approach applicable across all sce-
narios. Each representation offers different mathemati-
cal structures, assumptions, and types of inference. In
turn, the combination of these factors leads to different
performance characteristics with respect to modeling un-
certainty, expressiveness, adaptability, explainability, and
scalability. Each of these characteristics varies in its impor-
tance for different applications and use cases. For exam-
ple, the scalability requirements of a computational frame-
work for a single robot reasoning about semantic grasping
[65, 56] are different from a framework designed as a shared
cloud-based knowledge repository for many robots across
different environments [26], 20].

In Sections we present a representative list of
computational frameworks that have been used in liter-
ature. We describe the different data and mathematical
structures upon which these frameworks are built, how
their assumptions lead to various tradeoffs and use cases
in the context of semantic reasoning. Finally, we compare



these frameworks in terms of the high-level characteristics
that are essential for SRFs in Section .8

4.1. Semantic Graphs

A semantic graph G = (V,£) is a set of vertices V con-
nected by directed and/or undirected edges &, represented
by triples {(vi,ej,vi)|vi,v; € V Ae; € £}. In the context
of SRF, vertices V store one or multiple types of entity
information (e.g., text, images, sounds, trajectories, and
algorithm parameters) and each edge e € £ has a prede-
fined edge type that represents the relation between the
connected entities. Optional confidence values can also be
associated with vertices V and edges £ in order to rep-
resent the certainty of the encoded knowledge. Figure [2]
shows an example semantic graph.

Tradeoffs in Context of SRF: A semantic graph is highly
adaptable and expandable. New observations can be easily
added to a semantic graph in the form of new vertices or
edges. Repeated (or lack of) observations of various phe-
nomena can be modeled by increasing (decreasing) confi-
dence values associated with the relevant entities. Vertices
can also be merged or split, as in [26], when new knowl-
edge is acquired (e.g., splitting existing entity Cup into
Mug and Cup). However, a significant limitation of the
graph representation is that it does not support rigorous
probabilistic inferences. Furthermore, the belief of an edge
or node is not well established, making it difficult to as-
sess the relative certainty of various types of information.
An approach uses the Katz centrality to assign an ‘impor-
tance’ score to nodes corresponding to particular objects
or motions [66], while another incorporates beliefs from
disparate knowledge sources or algorithms [26].

Uses and Applications: Reasoning over semantic graphs
can be performed at the node, local subgraph, or global
graph levels. At the node level, node similarity can be com-
puted by comparing the locations of nodes in the semantic
graph. For example, Wu-Palmer similarity [67] is used on
WordNet [12] data to generalize manipulation sequences
[68] and organizational preferences [69] between similar
objects. At the subgraph level, information retrieval on
large-scale semantic graphs is performed by matching a
query template with the graph [26] [66] [70]. Queries typi-
cally take the form (u,e,v), in which the variables u and
v are nodes in the semantic graph and the variable e is
a directed edge from u to v. For example, the query
(u, HasAffordance, scoop) can be used to retrieve a list
of objects that provide the scooping affordance, and the
query (spoon, e, kitchen) can be used to identify the rela-
tionship between a spoon and a kitchen. More complex
reasoning can be achieved by chaining multiple queries to-
gether, such as the above examples that can be used to
identify that going to the kitchen may allow the robot
to find an object for scooping [26]. At the global level,
graph matching assesses similarity between different mod-
els. For example, graph matching over topological models
of human spaces and objects provides a solution for place

¢1(mug, kitchen)

¢2(mug, living_room)

¢3(kitchen, living room)

Figure 3: An example Markov network with undirected edges be-
tween random variables. The joint distribution can be factorized
into clique potentials, denoted by ¢’s.

recognition and place classification [61], and graph match-
ing over object models of constituent parts enables ob-
ject recognition [7I]. A different approach is used in [72],
in which a score over an entire object graph is computed
based on object properties and neighboring objects. The
importance of different features is learned from demonstra-
tions in order to encode trajectory preference.

4.2. Markov Networks

A Markov network (MN), or Markov Random Field,
is a probabilistic graphical model represented by the pair
(H,P). The joint probability distribution P factorizes over
the undirected graph #H, whose nodes represent a set of
propositional random variables and edges represent the
correlations between random variables, as illustrated in
Figure [3l A commonly used type of Markov network is a
Conditional Random Field (CRF), in which random vari-
ables are divided into a set of target variables Y and a
set of observed variables X. Rather than encoding the
joint distribution P(Y, X), a CRF represents the condi-
tional distribution P(Y|X).

Tradeoffs in Context of SRF: As a probabilistic model,
a MN provides a computational framework for represent-
ing a complete probability distribution - the probability
of every possible event as defined by the values of all the
random variables. Additionally, the independence asser-
tions encoded in the graphical structure allow a distribu-
tion to be compactly represented as products of factors,
or clique potentials. Since the factorization is over cliques,
which are fully connected subsets of the random variables
in the graph (e.g., pairs of variables), a Markov network
is especially suitable for modeling symmetric or associa-
tive relations between variables. When relations between
certain variables are hard to elicit due to overlapping in-
formation or implicit correlations, a CRF can be used to
avoid representing a probabilistic model over these vari-
ables. However, the flexibility in defining MNs and CRF's
results in a lack of clear semantics, which has several dis-
advantages. First, each clique contributing to the over-
all inference result does not help to reveal which random
variables affect the result the most. Second, the use of
cliques to define a joint distribution makes parameterizing
the model by hand more difficult. The second limitation



P(kitchen|mug)

P(living room|mug)

Figure 4: An example Bayesian network with directed edges between
random variables. The joint distribution can be factorized into con-
ditional probabilities, denoted by P’s.

leads to the convention of learning clique potentials from
training examples, which requires apriori data to converge
to reasonable parameters [73] [74] [75].

Uses and Applications: Markov networks have been
used to model spatial and contextual relations between
objects. Jointly reasoning about these relations helps to
improve the robustness of object classification algorithms
over those that are based solely on visual features. For
example, Relational Markov Networks, an extension of
CRFs, have been used to represent the spatial relations
between walls and doors in 2D laser scans [74]. Modeling
the spatial relations allows this approach to infer labels for
line segments that are not confidently classified from the
2D map features alone. Similarly in [75], CRFs are used
to exploit contextual and spatial relations between objects
in a scene to improve object classification.

4.3. Bayesian Networks

A Bayesian network (BN) is a probabilistic graphical
model represented by the pair (G, P), where the probabil-
ity distribution P factorizes over a directed acyclic graph
G. The nodes in G represent propositional random vari-
ables, and edges represent informational or casual depen-
dencies between the variables. Figure [d]shows an example
of a BN.

Tradeoffs in Context of SRF: The main advantages of
a Bayesian network as a computational framework are its
precise probabilistic interpretation and its adaptability.
The Markov assumption and directed-acyclic constraints
that define the scope of the network, allow for simple
interpretation of conditionally independent variables and
causal relations between variables. The structure of BNs
allows for direct inference over variables and learning of pa-
rameters/structures via efficient approximations, such as
importance sampling or Gibbs sampling. Factorizing the
full joint distribution over G via conditional probability
tables (or distributions) also makes determining the influ-
ences of inference results more accessible than MNs. How-
ever, managing large-scale conditional probability tables
leads to drawbacks in terms of scalability. While the rich-
ness of the resulting probabilistic representation is useful
to robots reasoning about specific problems, inference and
learning in BNs is often intractable for real-world prob-
lem sizes involving many random variables and edges in a

P(kitchen, living room|mug)

Figure 5: An example partially directed acyclic graph with both
directed and undirected edges between random variables. The edge
between the two nodes in the same chain component is undirected,
while the edges between two nodes in different chain components are
directed. The joint distribution can be factorized into conditional
probabilities of chain components given their respective parents.

dense network. Thus, due to limited scalability, BNs are
rarely used in complex robot environments, but instead
are commonly utilized as a foundation for more complex
computational frameworks.

Uses and Applications: BNs have been used for se-
mantic grasping by encoding relations between grasps, ob-
ject features, and task constraints [65]. In this context,
Gaussian Mixture Models are used to discretize continu-
ous data for BNs in order to learn the network structures
for factors such as object convexity and grasp location.
BNs have also been used to generate situated probabilis-
tic models of the environment, enabling the robot to pre-
dict likely locations for previously unseen objects [16]. In
[76], BNs are extended to incorporate context and tempo-
ral relations into action selection using Dynamic Bayesian
Networks (DBNs), a representation that presents a com-
promise between state and space complexity.

4.4. Partially Directed Acyclic Graphs

A partially directed acyclic graph (PDAG), or Chain
Graph, is a graphical model represented by the pair (Z, P),
where the probability distribution P factorizes over the
hybrid graph Z, which consists of both directed and undi-
rected edges that represent influences between the propo-
sitional random variables encoded in the nodes of Z [73].
Figure [f] shows an example PDAG.

Tradeoffs in Context of SRF: PDAGs, which can be
thought of as a combination of MNs and BNs, allow for
modeling causal as well as associative relationships. How-
ever, similar to MNs, the PDAG joint distributions are
defined over chain components of cliques in the moralized
graph of 7 instead of individual conditional probabilities,
as in BNs. Factorization over cliques leads to confound-
ing inference results for reasons similar to that of MNs,
namely it is difficult to distinguish the variables that con-
tribute to an inference result. Additionally, PDAGs lack
clear semantics for model parameters, which makes model
parameters difficult to elicit from experts. As a result,
the convention, much like for MNs, is to estimate model
parameters from training data [44].

Uses and Applications: PDAGs have been used to per-
form causal and associative reasoning of spatial common-



Object Space
A
! TIsA
IsA ,’ Room
T-Box [ IsA/' IsA
Propertyl’
Mug I Kitchen Living Room
A 1 A
I 1 I
............................. P PP PP PP PP
Type1 1 IType
A-Box ! In !

objl ———————— locl

Figure 6: A graphical representation of an example description logic
ontology. The T-Box contains axioms defining relations between
class-level concepts. The A-Box contains a single fact, which is gov-
erned by the constraints defined in T-Box.

sense knowledge in order to build spatial models of indoor
environments. In [44], each room instance is connected
to one another by undirected edges according to a topo-
logical map. The potentials on undirected edges are used
to describe typical connectivity between room categories.
Within each room, the variable representing the room’s
category is linked via directed edges to the room shape,
size, appearance, and objects in it, capturing the causal re-
lations between these attributes and the room type. Simi-
larly in [77], undirected edges are used to model connectiv-
ity; however in this case, they connect nodes representing
waypoints in the map. For each waypoint, causal relations
between viewing angles, expected objects in a view, and
observations from a robot are modeled by directed edges.

4.5. Description Logics

Description Logics (DLs) are a family of formal knowl-
edge representation languages that are widely used in onto-
logical modeling. DLs represent an application domain us-
ing the pair (7, .A), where T, the T-Box, contains termino-
logical axioms describing relationships between concepts,
and A, the A-Box, contains assertional axioms capturing
knowledge about named individuals, i.e., the concepts to
which they belong and how they are related to each other
[78]. Figure [6] shows an example of a DL ontology.

Tradeoffs in Context of SRF: As a logic language, DLs
provide a precise specification of the meaning of ontolo-
gies. This precise specification allows DL ontologies to be
exchanged without ambiguity of their meaning, and also
makes it possible to use logical deduction to infer addi-
tional information from the facts stated explicitly in an
ontology. As decidable fragments of first-order logic, many
DLs also have effective methods to always derive the cor-
rect answer. Due to these benefits, DLs are widely used
in ontological modeling, and they provide the formalism
for the OWL Web Ontology Language, which is standard-
ized by the World Wide Web Consortium (W3C). As a
result of the wide use in the Semantic Web community,
there are many mature libraries providing tools to ma-
nipulate, reason, and query DL ontologies. However, DL
cannot be used to reason about uncertainty because DL
offers only deterministic reasoning about logic statements.
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VaVy IsMug(z) A IsKitchen(y) = AtLocation(z,y) 1.5
VzVy IsMug(z) A IsLivingRoom(y) = AtLocation(z,y) 0.7
VzVy IsKitchen(z) A IsLivingRoom(y) = Near(z,y) 0.4

Near(loc2,locl)

IsKitchen(loc2) IsLivingRoom(loc1)
AtLocation(obj1,loc2) '- IsMug(obj1) -‘ AtLocation(obj1,locl)

IsLivingRoom(loc2) IsKitchen(loc1)

Near(loc1,loc2)

Figure 7: An example Markov logic network and its grounded
Markov network. Each formula defining the Markov logic network
has an associated weight that reflects how strong a constraint it is.
The Markov network has 3 grounded atom: objl, locl, and loc2.

The lack of uncertainty modeling makes DL brittle when
incorporating new knowledge in situations where logical
contradictions arise [24]. However, ignoring uncertainty
allows DL-based semantic reasoning frameworks to scale
to a greater number of instances, type, and predicates [19].
Therefore, DLs are typically used for providing robots with
large-scale knowledge bases containing concepts from var-
ious domains.

Uses and Applications: Large-scale DLs have been used
to encode contexts, spaces, objects, actions, and features,
along with axioms that express inter- and intra-group re-
lations [79] 80, [81]. Custom DLs have also been used to
formalize knowledge in specific domains, including indus-
trial robotics [82], swarm robotics [83], and object ma-
nipulation [84]. Instead of designing the whole ontology
from scratch, the KnowRob ontology is constructed by
combining a manually designed ontology with the pub-
lic OpenCyc ontology, therefore bootstrapping available
declarative knowledge with general knowledge that could
be leveraged during tasks [59]. The ORO ontology is cre-
ated in a similar fashion by integrating with the Open-
Cyc ontology [24]. However, the ORO ontology focuses on
human-robot interaction, therefore adding new concepts
designed to facilitate interaction.

4.6. First-order Probabilistic Models

First-order Probabilistic Models are formalisms widely
used in Statistical Relational Learning (SRL) that com-
bine graphical models with first order relational represen-
tations [85], such as Markov Logic Networks (MLNs) [86]
and Bayesian Logic Networks (BLNs) [87]. A first-order
probabilistic model is typically represented as a collection
of first-order logic formulas with confidence scores, as illus-
trated in Figure[7] More details about SRL can be found
in [88] and [89].

Tradeoffs in Context of SRF: The most obvious bene-
fit that results from combining probabilistic reasoning with
first-order logic is that relational inferences can be used to



model uncertainty, becoming more flexible to noisy or con-
tradictory evidence. Another advantage of this representa-
tion is that its world definitions are more compact because
variables act as placeholders for entities, which allows them
to make relational rules interchangeable among entities. In
contrast, languages based on propositional logic or propo-
sitional probabilistic graphical models (e.g.,MNs, BNs, and
PDAGs) assume each symbol represents a concrete fact
or entity. However, while first-order probabilistic mod-
els allow the compact writing of rules, their representa-
tion rapidly expands when performing probabilistic infer-
ence or learning because first-order probabilistic models
still need to be grounded to their constituent probabilis-
tic graphical models for computations. For example, a
MLN needs to be grounded to a MN, which contains ev-
ery possible assignment to the variables in the MLN, as
illustrated in Figure [7} The scalability of inference and
learning can be partially addressed by leveraging struc-
tures in the models. For example, domain-lifted inference
algorithms exploit symmetries within Markov networks by
identifying symmetries directly from first-order structures
without grounding MLNs. However, symmetries are diffi-
cult to find and can be easily destroyed by evidence. Due
to this scalability issue, applications of first-order proba-
bilistic models in large-scale SRFs remain limited.

Uses and Applications: First-order probabilistic mod-
els have been used to construct multi-relational proba-
bilistic knowledge bases. In [31], a MLN is used to store
knowledge between object properties and affordances by
using probabilistic relations such as isA, hasAffordance,
and hasVisualAttribute. The MLN allows for a variety of
queries, for example, predicting affordance based on prop-
erties extracted from object images and inferring typical
features of objects with a specific affordance. Similarly
in [90], a MLN encoding relations between object proper-
ties (e.g., shape, size, and logo) is used to fuse informa-
tion from different perception routines for collective clas-
sification. In [91], a probabilistic programming language,
ProbLog, is used to construct a multi-objects affordance
model. The probabilistic logical rules can deal with un-
certainty in perception and action outcomes. Through the
use of placeholder variables in place of individual objects,
the relational representation is able to generalize the af-
fordance model learned from 2 objects to any arbitrary
numbers of objects. In [92], Distributional Clauses, which
is a first-order probabilistic model that supports modeling
continuous probability distributions, enables occluded ob-
ject search by encoding different spatial relations between
objects such as co-occurrence and stacking in addition to
affordance related relations. A dynamic version of Distri-
butional Clauses is used for object tracking during human
activities [93]. The physics laws and common sense knowl-
edge (e.g., if an object is on top of another object, it cannot
fall down) that are encoded in probabilistic and continu-
ous first-order rules help robots robustly track objects even
with occlusion.
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Figure 8: An example neural network embedding. Entities and rela-
tions are represented as vectors in a multi-dimensional space. As the
embedding aims to store the knowledge that a mug can appear in a
kitchen or a living room, the values of both rooms should be close to
the value of the Mug plus a vector that represents the In relation.

4.7. Neural Networks

A Neural Network (NN) is a parameterized function
approximator F that defines a mapping from input data
X to output results Y (i.e. Y = F(X,0), where © rep-
resents parameters of F) [94]. The NNs used in seman-
tic reasoning frameworks usually have two distinctive fea-
tures. First, these NNs often make use of data containing
semantic features, such as natural language descriptions
of manipulation actions [62], or subgraphs from a knowl-
edge graph [95]. Second, the objective of these NNs is to
learn not only the mapping from input to output, but also
the structure and semantic relations that underlie the data
[56]. Embedding methods [96], in particular, represent a
family of NNs that focus on encoding the structure of data
by projecting input data into vector spaces in which spatial
relations reflect the semantic relations of the input data.

Tradeoffs in Context of SRF: NNs are a flexible com-
putational framework capable of learning highly complex
relations from data that are often difficult to encode manu-
ally. NNs can also take data of almost any form (e.g., task
label, natural language instruction, image, point cloud,
grasp pose, and trajectory), thereby allowing multimodal
data to be combined and reasoned about collectively in a
principled way. However, the adaptability of NNs comes
at a cost to semantic reasoning for robotic applications.
First, training NNs requires large amounts of data, which
is often challenging to obtain, particularly in physical en-
vironments. Second, NNs are not as transparent as logic
or probabilistic models, therefore reducing the explainabil-
ity of the decision-making process. Additionally because
the learned semantics within the NNs are challenging to
extract, a NN trained in one domain may not transfer well
to another (e.g., simulation vs real-world). While progress
continues to be made on this front in the deep learning
community, it is still a serious concern for practical appli-
cations involving physical robots operating autonomously
in real-world environments.

Uses and Applications: Neural networks have been
used in a number of semantic reasoning frameworks to
learn mappings from semantic features to desired robot
behaviors. In [56], contextual information, such as object



affordances, materials, and intended manipulation tasks,
represented in the form of text labels, are used as inputs
to a NN to predict the compatibility of grasps with given
tasks. In [62], neural networks are applied to multimodal
data, including trajectories, point clouds, and language
inputs, to transfer manipulation trajectories to previously
unseen objects. Graph Neural Networks, which model de-
pendencies between nodes in a graph and thus can be used
to leverage knowledge graphs, have been applied to the
problems of recognition of novel objects [42] and visual se-
mantic navigation in novel environments [64]. As noted
above, embedding methods also have been widely used in
semantic reasoning frameworks to capture relations within
the data. In [97], knowledge graph embeddings are used
to capture relations between household objects and their
attributes, enabling the robot to predict locations of ob-
jects, likely materials for objects, and affordances of ob-
jects. Word embeddings capturing similar word meanings
are used in [98] and [99] to perform multi-modal language
grounding and learn common sense navigational knowl-
edge, respectively. The work of [I00] explores a multi-
modal embedding that mapped trajectory, language in-
struction, and object point cloud data to the same embed-
ding space.

4.8. Summary of Computational Frameworks

Robots operating in complex human environments, such
as homes, offices, and hospitals, require the ability to model
uncertainty in the environment, reason about the world at
varying levels of abstraction, adapt to changes in schedule,
task requirements or object placement, be transparent in
their reasoning and choices, and scale to multiple domains.
Each of these challenges can be aided by semantic reason-
ing. Therefore in the context of SRF, we associate these
challenges to five crucial characteristics of computational
frameworks:

1. Modeling uncertainty - ability to model the inherent
uncertainty and variability of the real world;

2. Ezpressiveness - ability to represent reasoning pat-
terns at different levels of complexity, such as propo-
sitional, first-order, second-order, and etc;

3. Adaptability - ability to efficiently adapt the knowl-
edge representation in response to new observations;

4. FEzplainability - ability to communicate information
in a clear way and the transparency of the decision
making process;

5. Scalability - ability to effectively model complex, real-
world environments consisting of hundreds of ob-
jects.

Existing computational frameworks have succeeded in meet-
ing one or more of these challenges, though no framework
to date has excelled in all five areas.

Modeling uncertainty: Probabilistic models, including
MNs, BNs, PDAGs, and first-order probabilistic models,
are inherently effective at modeling uncertainty. When
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using other frameworks in situations with nondeterminis-
tic information, probabilistic variants of these frameworks,
such as Bayesian Neural Networks [I01] and Probabilistic
Description Logics [102], can be selected.

FEzxpressiveness: First-order frameworks such as DLs
and first-order probabilistic models are more expressive
than probabilistic graphical models (e.g., MNs, BNs, and
PDAGs), which use propositional random variables. Re-
cent work on NNs has also shown to be able to approxi-
mate first-order logic, therefore producing more expressive
reasoning patterns [103] 104} [105].

Adaptability: Incorporating new information into prob-
abilistic models is hard as it often entails learning new pa-
rameters or structures. In contrast, new knowledge can
be more easily added as new assertions in DLs and as new
nodes or edges in semantic graphs. Since NNs are typically
capable of generalizing learned models to new data, new
information can also be reasoned without retraining.

Explainability: Symbolic frameworks, including all frame-
works previously introduced except NNs, are typically eas-
ier to interpret than non-symbolic approaches. Within
symbolic approaches, reasoning in a DL or a semantic
graph often is involved with a subset of contained infor-
mation while reasoning in a probabilistic model depends
on all random variables in the model. The modular and
local reasoning mechanism, as a result, provides more in-
terpretability.

Scalability: NNs, semantic graphs, and DLs have all
been used with large-scale data [97, 26, [106]. In con-
trast, probabilistic models are less efficient at handling a
large amount of information. As for first-order probabilis-
tic models specifically, scalable inference and learning are
still open research problems.

When using existing computational frameworks for se-
mantic reasoning, trade-offs between the five character-
istics mentioned will need to be considered according to
the reasoning problem domain, available knowledge, and
formal verification requirements. However, a direction for
future work is to continue to push toward a framework
that excels in all five areas.

5. Building World Representations from Data

In this section, we turn our attention to constructing
world representations that encode various types of seman-
tic knowledge. Specifically, we consider world representa-
tions that model five semantically meaningful entity types:
objects, spaces, agents, tasks, and actions. These five cat-
egories cover different aspects of the world a robot in-
teracts with, and each is also inherently different in the
modality and underlying structure of its data. By ana-
lyzing these five categories of representations, we aim to
provide developers the useful languages to build up multi-
modal, multi-relational, and multi-domain semantic rea-
soning frameworks that can accurately model and reason
about the world.
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5.1. Representing Objects

In this survey, objects refer to the physical entities that
robots can perceive and interact with. Representations of
objects model object properties and the relations between
these properties. Leveraging object representations helps
create robot behaviors that are intelligent (e.g., manip-
ulation based on object functionality [107, (56]) and ro-
bust (e.g., recovery of task failure with object substitu-
tion [I08]). In addition to storing information associated
with objects, object representations also serve as a foun-
dation for representations of other entity types. For exam-
ple, modeling the function of a space depends on modeling
its contained objects, and modeling the belief state of an
agent often requires modeling the agent’s perception and
understanding of objects.

In discussing the structure of object representations,
we refer to three types of encoded information: metric,
instance-level semantic, and class-level semantic, as illus-
trated in Figure [0}

e Metric: Metric representations of objects contain in-
formation unique to each object instance (e.g., im-
age, point cloud, and pose). As these representa-
tions store high-fidelity information, they are often
numerical and continuous. Aggregating these low-
level data for each instance or across instances allows
robots to build features that are used to recognize ob-
jects and properties, enabling grounding [58]. Mean-
ingful semantics and suitable abstraction can also be
automatically discovered from the metric data [100].
Maintaining the raw data, in addition, helps avoid
the combinatorial explosion that would arise from
storing all possible qualitative semantic representa-
tions (e.g., pair-wise relations between objects) [106].
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o Instance-level Semantic: Instance-level semantic rep-
resentations include abstract concepts about each
object instance, which are grounded in a robot’s ob-
servations. For example, in Figure [0 the object is
classified as a cup from its image. Since these repre-
sentations are abstract, they tend to be qualitative
and discrete. The compact form of instance-level se-
mantic representations facilitates efficient semantic
reasoning but they also maintain enough informa-
tion that can distinguish between object instances
and guide precise robot behaviors [56] [65].

o (lass-level Semantic: Class-level semantic represen-
tations encode abstract knowledge that generalizes
across an entire class of objects. For example, a cup
is a container and can be used for drinking. Similar
to instance-level semantic representations, the class-
level representations often are symbolic. Though
class knowledge cannot be readily perceived, it en-
codes many useful priors that can be extracted from
semantic knowledge sources or manually created by
experts [59] 25, 109].

Together these three types of object representations al-
low a robot to ground perceivable symbols, learn class
attributes from instances, and relate objects to other ab-
stract semantic concepts. These three types of information
are observed in many complete semantic reasoning frame-
works such as KnowRob [59], RoboBrain [26], ORO [25],
and OUR-K [8I]. To provide concrete examples, we now
discuss how a variety of object properties and relations
have been modeled in representations of each type.
Metric representations have been used to store com-
plete and accurate information about object appearance,
shape, location, and use. Specifically, 2D images [26] and
3D CAD models, meshes, and point clouds [59] 110} 26
62, [T00] encode raw visual and geometric information. In-
termediate representations such as image features [79, 26],
primitive shape models [59,[79], and object dimensions [92]
store processed 2D and 3D information. Objects are also
represented by parts extracted from methods like curvature-
based segmentation [59, 107, 111] and Reeb-graph seg-
mentation [7I]. Apart from visual and geometric infor-
mation, object poses are also maintained in the numeric
form, which enables both metric reasoning [75] 03] 112} [61]
and extractions of qualitative spatial relations [106] [59].
Object functions are often described in the language of af-
fordance, which is introduced by Gibson as the properties
of an object that determine possible actions to perform
on it [II3]. At the metric level, the spatio-temporal rep-
resentation of affordance defines both the 3D location of
interaction on an object, and the motion trajectory for
manipulating it [I12] 1T4]. Articulation models are also
included in prior work to specify manipulation trajecto-
ries for objects such as doors and drawers [I10, [TTT].
Instance-level semantic representations have been used
to encode a variety of abstrast information about indi-
vidual objects. Class labels represent object categories,
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which can be predicted from end-to-end image classifiers
or grounded in low-level and semantic features [79, [75]
71, 115, [116]. Shape labels extracted from metric data
are used to infer affordance [91] [92] [7] and guide grasping
[65]. Affordance labels are also directly extracted from vi-
sual data [50 [7]. Another widely used representation is
object part labels, the definitions of which are based on
common object parts (e.g., door knob) [106, 107, 11T, [79],
affordances (e.g., pourable and containable) [56] [7, [114],
and other heuristics (e.g., top and bottom) [I15]. Object
states [I15, [56], materials [56] [7], and other more open-
ended language descriptions [22, 98] have also been used
to charaterize object instances.

Class-level semantic representations have been used to
store general knowledge about object classes. External
knowledge graphs and ontologies, such as WordNet, Con-
ceptNet, and Cyc, are connected to objects through class
labels [109, 97, [16, 99} [64] 98]. To deal with partial and in-
accurate information from these knowledge sources, some
methods have used these priors as high-level constraints
or probabilistic statements instead of ground-truths [106],
59, BT, [42]. General spatial knowledge is also expressed in
terms of object classes (e.g., a kitchen typically has a sink
and a microwave), which we will discuss in more detail
in Section [£.21 Prior work has also modeled the relations
between different types of class-level knoweldge and used
them to infer missing or unknown information such as af-
fordances and possible object locations [97, [16] 117, 99].
A unique representation at the class level is word senses,
which eliminate the ambiguities between objects with the
same name but different meanings (e.g., a bowl as a con-
tainer or as a stadium) [118), 16} [18].

5.2. Representing Spaces
Spaces in this survey refer to continuous expanses with
specific volumes defined by their boundaries. We distin-
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guish the concepts of map and semantic spatial model in
the context of semantic reasoning. The primary purpose
of a map, as used in the literature [IT9] 120, 121], is for use
in navigation and localization. We introduce the concept
of semantic spatial models, which are also designed to rep-
resent spaces, but with the purpose of facilitating task exe-
cution. For example, semantic spatial models often encode
semantic object types and attributes in addition to space
occupancy or room topology, which enables task planning
[109, 45]. By using semantic spatial models, queries can
be made to reason about not only spaces but also other
objects, agents, actions, or tasks associated with them.

In discussing the structure of semantic spatial models,
we define three main layers: metric, instance-level seman-
tic, and class-level semantic (Figure . Note that the
structures of semantic spatial models and object represen-
tations are closely related as they share similar levels of
abstraction.

e Metric: The metric layer of a semantic spatial model
describes spaces and contained entities quantitatively
through various numeric measurements (e.g., laser
scan, 3D pose of landmark, occupancy grid, and
topological map). Metric representations allow robots
to interpret the geometry of environments but lack
the abstraction and semantic meaning required to
perform efficient reasoning.

o Instance-level Semantic: The instance-level seman-
tic layer of a semantic spatial model enriches the
metric layer by assigning semantic meaning to mea-
surements [60]. This layer has nodes that repre-
sent observed concepts (e.g., recognized objects and
rooms) and edges that represent observed relations
(e.g., spatial relations and part-whole relations), from
which belief states can be extracted to be used by
task planners.

o Class-level Semantic: The class-level semantic layer
of a semantic spatial model allows for further gen-
eralization by including general knowledge of class
types. This layer can store abstract properties about
the class types (e.g., bedrooms and living rooms are
rooms in house environments) and encode common
rules (e.g., sofa and TV are typically observed in liv-
ing rooms) [109 [44].

Prior work has explored techniques for combining infor-
mation across various subsets of these layers, as discussed
below.

In many semantic spatial models, all three layers are
in use. This is particularly true for models of large spaces
composed of many rooms or locations, such as an entire
kitchen [I9] or a whole office floor [44]. In these spaces,
all three layers are crucial as robots need to navigate with
the metric information, efficiently reason about individual
entities with the instance-level semantic knowledge, and
generalize with the class-level semantic knowledge. The
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Figure 11: Structure of task representations

exact details of how information is encoded at each layer
differ across frameworks. In [80) [8T] [60} [109], class-level
knowledge about typical room types (e.g., a bedroom has a
bed) are encoded in expert-created ontologies. In order to
overcome the rigidity of rule-based systems, co-occurrence
statistics of objects and room types are stored as condi-
tional probabilities [122] [61]. In [44], 45| [77], room-object
relations, room-appearance relations, and room-room con-
nections are simultaneously represented in PDAGs. In
[19], class-level knowledge about objects and spaces are
obtained by establishing connections to external common-
sense ontologies.

All three spatial layers are not always needed, and sub-
set pairs have been used in some applications. For ex-
ample, metric and instance-level semantic layers are com-
monly used to reason about spatial relations between ob-
jects in a single space (e.g., a cabinet or a tabletop). The
metric information provides precise specifications for the
qualitative spatial relations in instance-level semantic rep-
resentations, allowing for contextual reasoning [75], 92],
perspective-taking [25], and temporal reasoning [59]. With
only abstract knowledge, the instance- and class-level se-
mantic layers are used to qualitatively reason about miss-
ing objects in different scenes [1006] [63, 117]. Some ap-
proaches model spaces only at the class-level. The ab-
stract knowledge about types of spaces provides high-level
guidance for object search [97] and semantic navigation
[64].

5.3. Representing Tasks

Tasks in this survey are defined as structures that en-
capsulate and organize grounded actions. Task planning of
robots in the physical domain poses challenges such as in-
tractable domains, partial observations, stochastic effects,
and disconnected goals. Semantic reasoning is used to al-
leviate these problems by adding organized information.
We show three essential structures of semantic task mod-
els in Figure The two upper panels of Figure [11] show
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how tasks can be organized as sub-tasks in a class-level
task hierarchy. This structure is used to represent tasks at
an abstract level. The two lower panels of Figure 11| show
how each sub-task could be represented and linked to in-
formation in representations of other entity types in class-
level sub-task template and class-level sub-task instantia-
tion. The example structures illustrated in Figure |11] and
defined below illustrate one approach by which semantic
knowledge can be incorporated into tasks.

o Class-level Task Hierarchy: recursively decomposes
a task into sub-tasks until a known set of class-level
sub-task templates are reached. A task hierarchy
uses different levels of abstraction to enable re-use
of task plans and effectively represents the sequential
nature of tasks with multiple steps [123].

o (lass-level Sub-task Template: defines a sub-task by
placeholder actions and placeholder conditions. This
structure serves as the blueprint of the class-level
sub-task instantiations and allows for better gener-
alization by grouping instantiations from the same
template [45].

o (lass-level Sub-task Instantiation: inherits all the re-
strictions from the class-level sub-task template by
instantiating pre- and post-conditions in terms of
class-level concepts in other world representations.
Connection to other representations help infer miss-
ing information in tasks and infer the correct order-
ing of sub-tasks. (For the example in the figure, be-
cause the refrigerator is connected to pancake mix
in object representation and kitchen in space repre-
sentation, perceiving refrigerator is added as a pre-
condition to help the robot find pancake mix in ex-
ecution).

It is worth noting that the instance level of task speci-
fication is not shown here because its conditions are spec-
ified as concepts in other representations. For example,
the realization of a sub-task is an action. The grounding
of class-level concepts of tasks are discussed separately in
Sections and

Prior work has explored techniques for utilizing differ-
ent subsets of structures to organize tasks. Incorporating
hierarchical structure into task representations, which can
be learned from a repository of tasks [124] [T08] [125], or
encoded by an expert [126] BT], [123], promotes robustness
and efficiency of task execution and planning. Decom-
posing tasks in hierarchies helps promote robustness to
stochastic task outcomes [123] [127] and representational
efficiency through the re-use of tasks [124] 20]. Addition-
ally, a hierarchical task decomposition enables more effi-
cient planning by planning at different abstraction levels
(e.g., planning at class-level) [127], or executing partial
plans (e.g., only planning to decision points which require
execution) [123].
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In addition, class-level task hierarchies have been widely
used in prior work to express the ordering of task steps
both explicitly in symbols [18, 128, [45] 129 66], or implic-
itly in neural architectures [130, 131}, 124]. The ordering
constraints within the class-level task hierarchy structure
enables robots to infer a sequence of actions to reach a
goal state [I32] [60], select the next action given the cur-
rent state [40] [130], and repair failed task plans [45] [77].
In addition to modeling robot tasks, class-level task hier-
archies have been used to model instructions provided by
humans during interactions [I8] [25].

Besides encoding sequential and hierarchical structures
of tasks in task representations, prior work has also adopted
class-level sub-task template and instantiations by ensur-
ing correspondences between generic and task-specific in-
formation [133] B9 127]. Several methods leverage class-
level sub-task instantiations to establish the connection
to other world representations. In [8I], pre- and post-
conditions are defined in terms of concepts in object and
space representations. Similarly in [60], conditions link to
semantic maps and topological maps. In [59], conditions
additionally incorporate temporal information for inferring
and explaining temporal order of tasks.

5.4. Representing Actions

Actions in this survey refer to physically grounded robot
behaviors. Inherently, actions are continuous, stochastic,
and require feedback. In the context of SRF, each action
also has related semantic representations, which create a
high-level abstraction for the low-level sensor-motor expe-
rience and associate the action with contextual informa-
tion. The semantic representations of actions are compact
and can be easily connected with high-level objectives and
task plans. By leveraging the encoded information in these
representations, robots can generalize behaviors to novel
situations [I34] 62] and take actions appropriate for the
context [72].

In discussing the structure of action representations
used in prior work, we build on the framework of object-
action complex (OAC) [126], which aims to bridge the gap
between high-level abstract reasoning and low-level control
knowledge for actions. We adapt the OAC representation
in the context of SRF so it is consistent with the language
of this survey. Specifically, action representations have two
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layers: metric and instance-level semantic, as illustrated in
Figure [12]

e Metric: The metric representations contain low-level
information related to actions. The representations
can be divided into representations of the world states
(e.g., an image of the scene, a pose of the manip-
ulated object) and representations of actions them-
selves (e.g., a trajectory, a feedback controller). Exe-
cuting an action causes changes in the physical world
that transform the initial world state WS to the re-
sulting world state WS.,..

Instance-level Semantic: The instance-level seman-
tic representations create high-level abstractions for
actions. The word instance-level emphasizes that
these representations are grounded in the metric level
data. Similar to the metric layer, the semantic layer
consists of semantic representations of world states
and semantic representations of actions. The seman-
tic representation of an action can be a prediction
function that models how the semantic world state
will transform from the initial semantic state Sy to
the predicted semantic state S, if the action is ex-
ecuted [126]. However, the semantic representation
of an action can also be as simple as a language de-
scription of the action [62].

Another essential feature of action representations is the
tight connections between these two layers. As robot ac-
tions are noisy, keeping the mappings from metric to se-
mantic representations of world states allow robots to dis-
cover the discrepancies between the physical actions and
imagined actions. For example, the difference between S,
and Sp, or the difference between WS, and WS, as illus-
trated in Figure

All the described components of action representations
are observed in prior work. In OAC [126], the discrep-
ancies between the effects of actions in the semantic and
metric layers have been used as feedback to both improve
the prediction function for push actions and facilitate the
learning of task-agnostic and specific grasps. In [91], a
prediction function for primitive actions is implemented
in a SRL formalism. Having the conceptual model of ac-
tions allows a robot to pick actions most likely to produce
desired effects on objects.

Besides learning conceptual models of actions, seman-
tic representations of actions are also commonly used for
creating generalizable actions. In [135[134], the controllers
of the robot manipulators are parameterized by task func-
tions grounded in geometric features of objects (e.g., keep
the main axis of the spatula pointed at the center of the
oven). Actions are generalized to new objects by imposing
these task functions as semantic constraints on function-
ally meaningful geometric features (e.g., handles). An-
other approach combines low-level trajectories and point
clouds of object parts with high-level language instructions
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in NNs to create generalizable representations of actions
[62], [T00].

Semantic representations of actions also allow high-
level constraints to be easily incorporated. In [72], user
preferences of trajectories are modeled as a scoring func-
tion that is computed from both metric information (e.g.,
robot arm configurations and distances to surrounding sur-
faces) and semantic representations (e.g., properties of ob-
jects that are near to the trajectory). Many existing ap-
proaches to semantic grasping have also leveraged seman-
tic representations to compactly encode contextual infor-
mation [56] 65 115].

5.5. Representing Agents

Agents in this survey are defined as a robot itself, other
robots, and humans in the environment. Inferring human
belief states is often vital for Human-Robot Interaction
(HRI), while understanding the capabilities of the robot’s
self and others is often necessary for task-collaboration and
knowledge sharing. The representation of each agent (i.e.,
the self, other robots, and humans) includes that agent’s
capabilities, configurations, and belief states, as illustrated
in Figure While an agent has direct access to its own
belief states and capabilities, the belief states and capa-
bilities of other agents can be received through message
exchange between agents [20] or inferred from perceptions
[136].

o Capabilities & Configuration: The capabilities of an
agent can be inferred from its physical configura-
tion. In addition to spatial poses and dynamics of
body parts, physical configurations can include se-
mantic descriptions linking properties, algorithms,
and other semantics to reason about overall agent
capability with respect to actions or tasks [21].

e Belief States: The belief states of agents can con-
sist of the previously mentioned representations (i.e.,
object, space, task, action) or attributes specific to
agents (e.g., intent) [25]. Within the agent’s belief
state, the different representations will interact as
the world state changes and the representations are
updated.
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Human agents have been modeled in semantic rea-
soning frameworks to enable naive user interaction with
complex semantic reasoning frameworks [24] 25, 18] and
to adapt semantic reasoning from data provided by naive
users [15] [69] 114 311 [15], 137]. Semantic reasoning frame-
works that leverage ontologies [24] 25| [I9] have modeled
human agents by including relevant classes (e.g., agent,
embodied agent, human, robot, body part), properties
(e.g., is desired, sees, has in hand), and alternative cog-
nitive models that may be globally inconsistent following
theory of mind principles. The addition of these classes
and properties has enabled complex interaction [25] [24]
and learning of human preferences such as where to per-
form actions [19, I11]. In addition to deterministic rep-
resentations, MLNs have been leveraged to reason proba-
bilistically about human actions in relation to objects in
use [3I] and human commands in relation to the robot’s
perceived environment [I8]. Other methods have modeled
human agents through the use of an a conditional random
field to predict future human activities [26, [138] and have
learned manipulation tasks from human demonstrations
through text [I18] or videos [2] [125].

When multiple robot agents need to collaborate, it is
crucial to distinguish between robots and their capabil-
ities. In [82] and [83], each robot has its own ontology
and all robots are defined in a global ontology. Because
different robots perceive and interact with the world dif-
ferently due to different capabilities or perspectives, each
robot should have its own world representation. The work
of [116] differentiates object representations of different
agents by defining object affordances with respect to not
only object properties but also locations, properties, and
capabilities of agents (e.g., push affordance of refrigera-
tor door requires the agent to have push ability and be in
kitchen). A coordinator, which has access to each agent’s
ontology and the common goal, can then reason about task
assignments based on each agent’s affordances in the en-
vironment. Similarly in [I39], an ontology is combined
with a PDDL planner to coordinate multiple heteroge-
neous robots by using robot specific skills.

The semantic robot description language (SRDL) [21]
has been used in [20] to model agent capabilities. SRDL
allows for the unambiguous definition of a robot’s hard-
ware, configuration, and software, which in turn helps
specify its capabilities. Specifically, hardware and config-
uration refer to the physical parts of a robot (e.g., parallel
jaw gripper, 2D hokuyo laser range sensor, servo motor)
and the arrangement of these parts (e.g., link and joint
locations, ranges of an N-DoF arm), respectively. Soft-
ware encompasses both algorithms the robot use (e.g., 3D-
ObjectRecognitionAlgorithm) and world representations
it has access to (e.g. 3d-ObjectModel for Cup). Using
SRDL, a robot can reason about the likelihood of success-
fully performing specific tasks based on both its capabil-
ities and experience from previous attempts. SRDL also
aids a robot in selecting models and algorithms available
online based on its capabilities.
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Table 5: Referenced object (O), space (S), task (T), action (Ac), and agent (Ag) semantic reasoning works with related world representations.
Check marked world representations on the left side of the table are used to accomplish corresponding reasoning objectives listed on the right.
Gray shading is used to highlight groupings of techniques that address object-, space-, task-, action-, and agent-focused problems.

6. Combining SRF Components for Intelligent
Robot Behavior

Many intelligent robot behaviors can be achieved through
semantic reasoning — the inference and computation pro-
cesses that require all three core component of semantic
reasoning frameworks. Examples of such processes include
discovering the semantic similarity between environments,
inferring missing information from underspecified instruc-
tions or partially observable world state, or parameterizing
robot tasks to be appropriate for the context. In this sec-
tion, we study the reasoning capabilities that are enabled
by combining multiple of the previously discussed SRF
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core components.

In Table [5] we characterize various semantic reasoning
tasks by the world representations and reasoning objec-
tives. For example in [44], a robot joins the object model
(O), which encodes attributes that potentially influence
objects’ locations, with the spatial model (S), which stores
typical spatial appearance of objects, to accomplish the
“Inferring Object Location” reasoning objective. While
the table provides a full summary of techniques, in Sec-
tions [6.1H6.9] below, we more closely examine the integra-
tion of SRF components in several reasoning tasks.



6.1. Top-down and Bottom-up Object Perception

Object classification techniques typically fall into one
of two approaches: bottom-up and top-down. Bottom-up
machine learning algorithms, such as [5] and [144], train
models to recognize objects based entirely on low-level ob-
ject appearance features. Top-down techniques, such as
those in [22] [79] B0} [7], classify objects based on abstract
characteristics of objects (e.g., a refrigerator is a white hex-
ahedron with a door). Both approaches have limitations
— bottom-up techniques are prone to provide ambiguous
results [75] and have lower performance when objects are
partially occluded [93], while top-down techniques are too
rigid to capture the diversity of instances in many object
classes.

Several semantic reasoning frameworks have developed
techniques for combining bottom-up and top-down rea-
soning to leverage their relative strengths. In [I40], max-
imum a posteriori estimation integrates bottom-up object
classification scores with top-down inference over occur-
rence probabilities of spatially related objects. Similarly
in [74[75], MNs model object features and spatial relations
to combine reasoning from both directions. In addition to
object recognition, in [93], physical laws and commonsense
knowledge (e.g., a small object can fall inside a large box)
defined in a SRL model help track objects even when they
go out of sight. High-level knowledge can also result in
more efficient learning of bottom-up methods. In [42] 95],
few-shot and zero-shot object recognitions are achieved by
generalizing visual classifiers in Graph Neural Networks
that capture high-level semantic similarities between ob-
jects.

6.2. Inferring Object Affordances

The ability to reason about affordances enables robots
to choose actions that are suitable for a given object and
produce the desired effects. Most prior work has modeled
affordances as intrinsic properties of an object that deter-
mine possible actions to perform on it (e.g., a cup is pour-
able, and a fork is stab-able and lift-able). To obtain this
data, affordance labels are retrieved from a semantic graph
based on objects’ class labels [26]. Furthermore, by mod-
eling the correlations between affordance labels and other
object properties (e.g., materials, locations, and shapes),
an object’s affordance can be predicted from its properties
using an MLN [31], BLN [I6], or NN Embedding [97].

However, reasoning about affordance labels alone ig-
nores the essential interaction between objects and the
environment. In [91], a BLN models this interaction by
representing objects, actions, and effects as separate ran-
dom variables. Reasoning about affordances is modeled as
various sub-tasks, such as estimating the effect of an action
performed on an object, or predicting the action given the
desired effect on an object. Although this decoupled affor-
dance model reflects the connection between objects and
the environment, discrete labels of actions and effects still
cannot be directly used by robots to produce continuous
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behaviors. As a result, a spatio-temporal representation of
affordance is used in [I12] that reasons about continuous
manipulation actions through joint probabilistic inference
over spatial and temporal distributions.

6.3. Reasoning about the Semantics of Space

Reasoning about semantic spatial models gives rise to
new capabilities, such as visual navigation, and provides
further robustness to localization and mapping. Using the
knowledge of common objects in different room types, a
robot can recognize its location (i.e., which room it is in)
[80, BT, [44), 45, 6T), 142] and detect high-level localization
errors when odometry fails [60]. Querying an ontology
containing typical spatial relations between objects (e.g.,
a tv is near a sofa) allows a robot to find a target object
that is not directly in its view by continuously navigating
to spatially related objects [80, 60]. The same reasoning
pattern is behind many recent methods for visual seman-
tic navigation [40, 64, [145]. In these methods, inference on
neural networks, instead of logic rules, is used to determine
navigation actions given observations of the scene. Besides
representing object knowledge in semantic spatial models,
task information can also be incorporated. In [I10], rea-
soning about the relation between execution success rates
and robot locations in a Gaussian Mixture Model facili-
tates task reproduction.

6.4. Inferring Object Locations Based on Class- & Instance-
level Knowledge

Class-level knowledge provides a general prior of typi-
cal object locations, while instance-level knowledge models
the appearances of objects in each specific environment.
Both types of knowledge have been used in prior work.

Class-level knowledge treats spaces and containing ob-
jects as general concepts (e.g., a bowl can be often found
in cabinets, sinks, and dishwashers). Inferring object loca-
tions is achieved by retrieving typical locations of objects
from ontologies [80, [8T], 59] or logic rules [60] T09]. Lever-
aging the intuition that related objects appear in similar
places, a work predicts object locations by finding semanti-
cally similar objects using the Wu-Palmer similarity mea-
sure [67] computed on an object hierarchy [59]. A method
based on neural network embedding takes a step further
by modeling different types of semantic relations between
object properties and locations to infer locations of objects
[a7.

A different approach is to utilize instance-level knowl-
edge, which pertains to the locations of objects in a spe-
cific environment. Existing methods often learn the co-
occurrence statistics of objects in different locations. In
[122], these statistics are modeled by conditional probabil-
ities. In [69], the Collaborative Filtering technique from
the data mining community for addressing personalized
user recommendations stores user-specific statistics. The
work in [92] applies a SRL model to reason about different
types of co-occurrences distinguished by spatial relations.



Ultimately, class- and instance-level knowledge should
be reasoned collectively. In [63], a factor graph joints com-
monsense knowledge at the class-level as well as long term
and short term memory at the instance-level. Similarly in
[64], a Graph Neural Network combines continuous local
observations with general prior knowledge from Concept-
Net to help a robot navigate to target objects.

6.5. Task Planning and Learning

Reasoning about task semantics (see Section has en-
abled improvements over the execution of task reasoning
objectives in Table [5] Two fundamental challenges when
reasoning about tasks involve either planning sequences
of primitive actions that lead to the completion of goals
[18, 25| [45] 133, 128, [146] 132 [139] or learning from se-
quences of primitive actions that demonstrate the comple-
tion of goals [40], [66] 124 13T, 118, [T0§]. Reasoning about
semantic properties of tasks can help to improve task plan-
ning efficiency and accuracy while promoting generaliza-
tion within task learning.

Many semantic properties of tasks have been lever-
aged to improve task planning and learning. Planning at
different levels of abstraction leads to planning computa-
tional efficiencies by reducing the planning state space to
classes of objects (i.e., t-box in description logics) while
executing over instances of objects [133] 127, [147, [148].
The integration of uncertainties with distinct semantics
through graphical or relational models helps infer the most
likely task plan given unobserved world states or under-
specified instructions [I8, 45]. Additionally, due to se-
mantically ambiguous world states, planners with multi-
ple world states can generate plans that reduce such un-
certainties [60, [77), 8], 130]. The hierarchical structure of
tasks helps task learning generalize because of modulariza-
tion enabled through the reuse of subtasks [20} 1406, [124].
The prediction of future world states as tasks are executed,
planned, or learned allows agents to detect, interpret, or
explain plan failures [45], 81 I3T]. The propagation of pre-
and post- conditions in under-specified tasks allow missing
task specifications to be inferred [I5] [I8] [132].

6.6. Enriching Task Planners

Although tasks themselves contain rich semantics (e.g.,
pre-conditions, hierarchies), many works have exposed task
planners to even more semantic knowledge. Enriching
task planners with semantic knowledge further promotes
reasoning objectives, such as task generation for decision
confidence, task monitoring, and other reasoning objec-
tives specific to tasks in Table [5| Generally, the semantic
knowledge being exposed includes precepts about the sit-
uated environment or default knowledge (e.g., fridge likely
contains food). These newly exposed semantics further en-
able task planners to make more robust primitive action
plans.

Streaming the perceived world state to task planners
increases situational awareness, making task plans more
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fit to the current world state. In [128, [149], the world
state is exposed in semantically meaningful ways to task
planners to enable data-efficient state updates while pro-
moting generalization. Sensor streams are processed into
semantically meaningful axioms and predicates in [22} [14T]
to update planners with environment variables that might
become useful in later parts of tasks, such as the location
of an item required in a later step of a task. In [22] [T4T],
planners can call perception routines to allow for active ac-
quisition of environment states and semantic information
when planning.

In addition to the perceived world state, exposing se-
mantics about default knowledge regarding specific tasks,
domains, and general concepts enables more robust task
planning. Observations from multiple environments or ex-
ecution histories are used to learn generalized rules or cor-
relations between semantic concepts, such as rooms and
objects, enabling task planners to prioritize task plans that
are more likely to satisfy task goals based on observed
correlations from prior environments [45], 133 127]. On-
tologies about common domains, such as households, pro-
vide task planners information useful during task execu-
tion such as object locations, uses, and suitable locations
for certain actions and tasks [I5) 19 I 133]. General
knowledge such as type hierarchies, semantic similarity,
generic relationships, and other forms of general knowl-
edge can be used to bootstrap task planners with a knowl-
edge base when operating in new environments or repairing
existing task plans to add robustness [16, [I8, 108]. En-
coded task-specific semantic knowledge can improve plan-
ning efficiency when the set of tasks are predefined by en-
abling planners to prune branches of plans that cannot
satisfy task goals (e.g., searching a bathroom for an oven.)
[60, [77]. Additionally, semantics about human agents have
been exposed to task planners to improve human-aware
task planning capabilities, such as including human pref-
erences in tasks and modeling human belief states during
task execution [25] 69].

6.7. Semantic Grasping

Instance-level semantic knowledge provides precise and
generalizable information for semantic grasping, which is
the problem of selecting stable grasps that are functionally
suitable for specific object manipulation tasks (e.g., when
passing a knife to a person, a robot should grasp the blade
instead of the handle) [I50]. Some existing approaches to
semantic grasping use metric data because reasoning about
the specific locations and orientations of grasps requires
detailed information about an object [150} [I51]. However,
discovering structures in high-dimensional and irregular
low-level features is hard and has prevented these meth-
ods from generalizing to a wider range of objects and tasks.
Compared to metric data, instance-level semantic knowl-
edge provides the necessary abstraction while also main-
taining enough distinctive information to guide accurate
selections of semantic grasps. A commonly used instance-
level semantic feature is object part information. Suitable



grasp regions based on segmented object parts have been
manually defined in logic assertions [107] and a SRL for-
malism [I15]. In data-driven approaches, semantic grasps
learned from task demonstration are reproduced on new
objects by matching Reeb graphs that represent object de-
compositions [71]. Learning the relations between object
parts and other contextual information, such as materi-
als, states, and tasks, in a NN enables generalizable yet
accurate reasoning of semantic grasps [50].

6.8. Reasoning about Continuous Actions

Semantic reasoning about actions requires the ability
to perform inference on continuous data. Determining the
appropriate level of abstraction for actions is challenging,
as illustrated in the study of the egg cracking problem
[152]. A large number of complex logic assertions are re-
quired to axiomatize the reasoning of the egg cracking ac-
tion because associated continuous behaviors and events
have to be discretized differently for different aspects of the
problem. Instead of developing a complete symbolic rep-
resentation of actions, many works explore certain aspects
of action semantics. For example, semantic representation
of grasps are derived from affordances and materials of ob-
ject parts [B6], user preferences for trajectories are based
on nearby objects [72], constraint-based motion control are
grounded to abstract descriptions of object parts [134], and
tool-use trajectories are characterized by physical proper-
ties such as displacement and velocity [I14]. Other works
leverage computational frameworks that can directly per-
form inference on continuous data. Learning in these com-
putational frameworks also allows structure and appropri-
ate level of abstraction to be discovered directly from data.
In [65], a Gaussian Mixture Model is used within a BN to
reason about continuous variables such as grasp position
and orientation. In [I12], Gaussian Processes with graph-
ical models together aid representation and reasoning of
manipulation trajectories of objects. In [62) 100], neural
networks are used to encode manipulation trajectories in
the shared semantic space with their matching language
descriptions and point cloud of the target objects. Execut-
ing actions in simulation is another direction for reasoning
about continuous actions. Though predicting action ef-
fects and retrieving motion parameters are demonstrated
in [I10], the speed and fidelity of simulation-based reason-
ing are still open challenges.

6.9. Enabling Interaction through Agent Semantics

Reasoning about agent semantics is crucial for robots
to collaborate with other agents successfully. Robots op-
erating in human environments often need to fill in knowl-
edge gaps required to interpret and execute tasks. In ad-
dition, modeling and reasoning about other agents is es-
pecially useful to enable interaction.

Interacting with other agents is a difficult task be-
cause differences in mental models result in knowledge
gaps across agents, which is especially true of human-
robot interaction. Several works have leveraged the diverse
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semantic knowledge of humans by directly incorporating
human declarations into ontologies and knowledge bases
18, 24, 25]. In addition to incorporating declarations,
works have used human-robot dialogues to capture and
update human beliefs, following theory-of-mind [24} [25].
Other works have filled human-robot knowledge gaps when
interpreting semantic commands by gathering and inter-
preting demonstrations of tasks from resources like online
recipes, web videos and images, or user preferences to en-
able capabilities like inferring tools involved during tasks
or preferred organizations of items [19, [3T], [68], [69] [125]
138, 18| [153]. Recognizing the value of such resources,
many works have moved further to organize various agent
representations into large knowledge bases for reuse across
tasks or agents [20] 23] 26| 3T, [68].

Aside from human agents, reasoning about robot agents,
including a robot itself and other robots, allows for interac-
tion between robot systems and the sharing of learned abil-
ities. Prior work has looked at reasoning about the seman-
tics of agent configuration and available hardware to de-
fine heuristics in a centralized task allocation model among
multiple agents [I16]. Other works have constructed shared
knowledge bases that contained annotations encoding the
semantics of action capabilities accounting for hardware
and software, objects models, and maps [20, 21]. These
annotations allow a robot to reason about which actions
it could perform, search for any missing object models or
maps needed in order to perform the actions, and calcu-
late the likelihood an action would succeed based on the
robot’s previous attempts. Recent work has further en-
abled collaboration between robotic agents by leveraging
hardware capabilities across agents to enable collaborative
task planning [139].

7. Open Challenges in SR for Robotics

Semantic reasoning for robotics represents a very broad
and rapidly expanding area of interest. As highlighted by
the discussion in the previous sections, current approaches
to semantic reasoning address a wide variety of problems,
under many different conditions and assumptions. Below,
we highlight a number of open problems and challenges
the research field faces, as well as promising directions for
future work.

Benchmark, Datasets, Comparisons: Existing works
within this research area lack datasets and benchmarks re-
quired to make comparisons between various approaches.
The lack of comparisons among approaches makes it dif-
ficult for researchers to build upon the best approaches,
therefore slowing progress to goals the community wishes
to achieve. Due to the broad range of problems and ap-
proaches within semantic reasoning, it is unlikely any sin-
gle dataset would sufficiently cover all problems. Addition-
ally, such datasets would need to include multiple modal-
ities for each reasoning objective to enable testing of a
broad range of approaches that integrate different knowl-
edge sources, world representations, and computational



frameworks. The development of these datasets and bench-
marks for various system aspects would be a strong cata-
lyst for promoting the maturation of this research area, as
has been seen in the computer vision and natural language

processing communities. Furthermore, updating these datasets

and benchmarks towards larger, more complex problems
that more closely model real-world applications must re-
main an ongoing concern as different implementations of
systems sufficiently solve each dataset or benchmark.

Computational Frameworks: As benchmarks mature
to become more challenging, computational frameworks,
which support the main infrastructure to relate seman-
tic knowledge, will need to improve. There is yet to ex-
ist a computational framework that can balance scalabil-
ity, model uncertainty, allow for complex conditioning of
queries, and be highly adaptable. While there will likely
continue to be trade-offs with regard to these aspects, im-
provements of existing approaches and development of new
representations must continue to support systems tack-
ling more challenging problems and domains. Exhaus-
tive quantitative comparisons of the various computational
frameworks in combinations with different semantic rea-
soning applications should be further explored to better
understand which frameworks best suit particular sets of
applications.

Using Context: Targeting more challenging benchmarks
will require more massive, complex computational frame-
works and knowledge sources. As problems scale to real-
world robotics applications, context is an increasingly im-
portant and under-explored feature that encompasses many
aspects of the semantic reasoning for robots problem. For
example, [16] 18] use environment context to filter Bayesian-
and Markov-Logic Networks down to manageable sizes that
can be used to infer task plans. In addition to filtering of
concepts, context can help select the appropriate abstrac-
tion levels to reason about specific tasks leading to better
inferences [I52]. Context will likely be used as a key fea-
ture in new ways as the complexity of problems increases.

Merging Knowledge Sources: Another challenge of se-
mantic reasoning for robots that remains unexplored is up-
dating and combining semantic knowledge sources. This
is difficult because some sources might only express bi-
nary beliefs (e.g., there exists a relation between x and y)
while others might include confidence levels for beliefs and
still others might have distributions over possible beliefs.
Combining such sources into a unified representation to
perform inference is challenging. Additionally, the sym-
bols and data types across knowledge sources could be
distinct creating knowledge gaps or duplicated requiring
disambiguation.
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